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1. INTRODUCTION

1.1 Background

Binary response models are used in estimating the performance sensitivity of a
subject population exposed to levels of a stimulus. The model arises as follows.
Assume that the stimulus influences performance and the problem is only to describe
the nature of this influence. For an individual subject, performance can be classified
as either a response or nonresponse, where a response to the stimulus is viewed as a
successful performance. It is assumed that a response occurs only when the applied
stimulus exceeds the subject's unknown tolerance, the stimulus level above which the
subject is sensitive. When characterizing the population, we denote performance in
terms of the probability of observing a response for each level of stimulus, that is, the
true proportion of the population with tolerances less than that level. This probability
corresponds to the distribution function of subject tolerance. The binary response
model imposes a problem structure through which performance sensitivity can be
expressed in terms of an estimated tolerance distribution.

Binary response models have two basic applications: to allow experimenters to
choose among several populations according to which has the more desirable
sensitivity; or alternatively, to allow experimenters to seek a stimulus to which the
population is more sensitive, or a specific level of stimulus for which an acceptable
number of responses are likely to be observed. A few exampies demonstrate the
widespread applicability of these models.

Ballisticians test the performance of a penetrator by firing it against a target and
assessing the damage, where damage is defined as perforation or nonperforation of
the target. The resulting damage relates directly to the penetrator's striking velocity.
A response curve characterizes this relationship by indicating the probability of a
response (perforation) for each fixed level of velocity. In effect the response curve
conveys, in a probabilistic sense, how sensitive to velocity is the performance of the
penetrator population. A penetrator deemed insensitive over a standard velocity
range is considered undesirable for use as a threat mechanism.

Other examples lending themselves to sensitivity analysis include the
determination of the quantity of poison necessary to kill a rodent, the tensile strength
required to withstand a stress, or the armor thickness needed to repel a bullet. The
analysis in these cases might suggest a need for recommended levels of dosage, stress,
or armor thickness, or, alternatively, improvements in poison potency, tensile strength,
or armor material. The common structure of these problems is made apparent in the
next section.

1.2 Statistical Problem Statement

In this section we define the structure of the modeling problem, present the
general approach that is used, and explain why the approach is reasonable. We begin



by describing the data. The data in a sensitivity test environment are characterized by
three common features. First, it is assumed that the stimulus does affect subject
performance. Second, when a stimulus is applied to a subject the result is one of two
possible outcomes, response or nonresponse. Third, a subject cannot be exposed to
more than one stimulus level because the subject properties change with their first
stimulus exposure. Restated, the second and third conditions describe a Bernoulli trial
in which the testing is destructive.

The principal goal of the analysis of sensitivity test data is the estimation of the
response curve P(x) for all or some levels, x, of the stimulus. So far, no restriction has
been placed on the model P(x), but we know from Section 1.1 that the purpose of the
model is to convey information about the performance of the subject population for
various levels of the stimulus. Expressing performance in terms of the proportion of
favorable results is a natural approach, and from the random selection of subjects this
proportion may be viewed as a probability. Thus, the first restriction is that P(x) must
be a probability for each stimulus level. Still, in terms of modeling we have only
restricted the range to [0,1]. We now impose further constraints. Let us assume the
real-valued response curve has the following properties:

1. P(-co) 0, (1.1)

2. P(oo)= 1,

3. P(x) is strictly increasing,

4. P(x) is continuous.

-nese restrictions imply the response curve P(x) is a distribution function, but
certainly a stimulus-response relationship need not assume such a form. For example,
consider the performance of a drug in its ability to cure an illness. If no drug is
administered the patient may still regain his health; thus, a probability of zero may
never be encountered. If excessive amounts of the drug are used, at some dosage
detrimental effects may result which would contradict the monotonicity property. But
for a variety of applications the conditions imposed are not constraining. For the
ballistics example, a zero velocity will obviously cause a failure to perforate, and an
infinite velocity will definitely cause a perforation to occur. Assuming an infinite
population, the physics of the test suggest further that the continuity and monotonicity
properties would not be unexpected. When these model limitations are acceptable, it
is convenient to think of P(x) as being the distribution of a specific random variable.



The random variable tolerance arises as follows. We assume that each member of
the subject population has a tolerance to the stimulus. For a specific subject,
application of any stimulus above its tolerance necessarily results in a response.
Application of a stimulus at or below the tolerance results in a nonresponse.
Assuming a continuum for the mapping, tolerance is a continuous random variable
which is not directly observable. Rather its value can only be bounded through the
observance of a response or nonresponse, e.g., a stimulus causing a nonresponse must
be less than or equal to the tolerance of the subject. The realization of tolerance for a
subject is that subject's specific sensitivity to the stimulus variable.

To summarize, sensitivity analysis using the binary response model expresses the
relationship between some stimulus variable and the resultant probability of response
for the subject population. Assuming that this response curve adheres to the
conditions of a distribution function, one can conceive of a random variable
(tolerance) with physical significance which would have that exact distribution. The
response curve is then identical to the tolerance distribution, and estimation of some
interval or quantile of this distribution becomes the task.

1.3. Purpose

Complete knowledge of the tolerance or response distribution provides precise
information regarding the subject population's sensitivity to the stimulus variable. A
general pth quantile (x10oP) yields less complete knowledge but often contains
sufficient information for valuable inference; specifically, it represents the stimulus at
which 100p percent of the subject population responds. The standard measure in
many sensitivity environments is x5,. Trevan [1927] first suggested the use of the
median dose in the context of biological assay. Today the median effective dose
(ED5) and the median lethal dose (LD5) serve as baselines for comparisons among
drugs. For example, in sensitivity analyses where drug selection is the goal, response
distributions are often assumed to be similar, that is, differing only in location. Thus,
differences in performance could be determined by comparing the estimates of x10P
for any general p; however, the median dose is usually used. One advantage to using
x50 is that the asymptotic variance of x1  achieves a minimum at p =.5 for the
common methods used. Moreover, several Monte Carlo studies involving these
methods support the minimum variance property for small samples as well. See, for
example, Wetherill [1963].

Some studies require information about the subject population's sensitivity for
which the xsO is not well suited. For example, it is of limited practical value to know
the armor thickness which will permit perforation by fifty percent of the threat
mechanisms. Quantiles in the tail of the response distribution contain more useful
information in this context. The utility of extreme quantiles in practice was recognized
by C.I. Bliss as quoted from Brown [1967]:



... interest does not always center on the EDSO or LDS0. Sometimes an
extreme percentage is important. For example, in sterilization tests for
fruit flies the quarantine officials desired 0 percent survival. It took
some arguments to convince them that it is impossible to measure 0 or
100 percent. Another example that arises in therapeutics is
determination of the 'safety margin', that is, the difference between
curative and lethal doses. Here interest might center on estimating the
ED99 (the dose that cures 99 percent) and the LD0, (the dose that kills
one percent). Actually, the ED95 and the LD0S are preferable for
realistic points.

Extreme quantiles, though useful for inference, remain difficult to estimate in many
practical settings. "Some methods are provided for estimating more general points on
a response curve ... , but extreme percentage points should be avoided" [Wetherill
1963]. Although progress has been made since Wetherills 1963 paper, the issue is as
yet unresolved.

In this paper we will develop an alternative to the current procedures for the
estimation of extreme quantiles.

1.4 Estimation Procedures for xi00P

Approaches to the estimation of x0p are varied. Methods include the use of both
fixed and sequential designs for data collection; for either, selection of the stimulus
levels may incorporate nonparametric or parametric considerations. Many parametric
assumptions are in use and include the normal, logistic, and Weibull distributions.
Several different estimators are often appropriate for use under the same design.
Hamilton [1979] compared the performance of ten different estimators for x. all
drawing upon the same data. Hybrid strategies combine methods usually treated
separately; for example, data gathered from a nonparametric sequential design may be
used in forming a parametric maximum likelihood estimate. In the following,
estimation procedure refers to any design and estimation combination.

The variety of possible procedures has stimulated much research. An extensive
review of the literature is not given here. Instead we give a brief summary for general
x00p in Sections 1.4.1-1.4.3 with special focus on those procedures and results germane
to our specific interest--extreme quantile estimation. The attention given to x5, is
necessary as background for later development. A detailed review of literature
targeting extreme quantiles appears in Chapter 2.

1.4.1 Estimation Techniques

Well-known nonparametric techniques include the work of Karber [131],
Wetherill et al. [1966], and Robbins and Monro [1951]. The Spearman-Karber
method and Wetherill's w estimate only the x , while the Stochastic Approximation
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Method of Robbins and Monro [1951] estimates any general xi00,. Generally, these
nonparametric estimators focus attention on a specific quantile with no formal way of
estimating neighboring quantiles with known accuracy and precision. We are
interested in estimating quantiles neighboring the design's "target quantile" as well.
This is done easily if the response distribution form is known. Therefore, we choose to
approach estimation parametrically.

When a parametric assumption can be made for the response distribution,
minimum chi-square and maximum likelihood estimation are commonly used. For the
application intended here, the number of observations taken from a given
distributional class is small. A practical disadvantage of minimum chi-square
estimation is that these limited samples may cause numerical instability, driven by very
small expected frequencies for some classes [Finney 1978]. In maximum likelihood
estimation, small class frequency is not as serious a problem. As to their relative
performance within the context of sensitivity experiments,

... no clear ruling can be given that one method is generally better than
the other in its approach to the true values of the parameters for either
normal or logistic models, and indeed it seems unlikely that a
consistent superiority of either will ever be demonstrated [Finney
1978].

Considering this position we will concentrate on maximum likelihood estimation.

Maximum likelihood estimates (ML-Es) of location and scale are easily developed
for the traditionally used two-parameter distributions. Under the usual
parameterization of the response distribution, P(x) = F(a + '7x) for a completely
specified F(.), where a and 7 are the location and scale parameters respectively. The
likelihood function is given by

L =11(7 Pnx)r --
L --

where ri/n i is the observed proportion of responses for stimulus xi. Solution of the
following equations yields MLEs for a and q7. Denoting I as the log-likelihood, we have

a, k ri-nP(xi) 1
S (a+ xi) = 0 (1.2)

i- P(x) (1- P(xi)) J8



kt , ri r P(x1) 1 X8

a, -. P(xi) (1- P(x1)) i91

By the parameterization P(x) = F(a + i7x), it follows that

xlop="Xl110-- 
(13)

where -y,0op is the p quantile of F(.). Then by the invariance property of maximum
likelihood, the MLE of x10o is given by the right side of (1.3), with & and substituted
for the true parameters. The well known efficiency and consistency properties of
MI.Es may be used to develop asymptotic results. We defer this development to
Chapter 3 where a specific parametric form is considered.

Maximum likelihood estimation is possible with any parametric form for which
appropriate regularity conditions hold. Among those are probit, normit, logit, linit,
and more recently, quantit transformations as well as several non "it" forms. The first
two correspond to the normal distnbution, and the second two refer to the logistic and
uniform distributions respectively. These and other historical parametric forms are
discussed in Finney [1978]. The quantit transformation is based on a three parameter
distribution given by Mielke [1972] in the context of rank tests. It was suggested for
use in sensitivity analysis by Copenhaver and Mielke [1977]. It is representative of
recent efforts by Einbinder [1973], Prentice [1976], Aranda-Urdaz (1981], and
Guerrero and Johnson [19821 to generalize the parametric form assumed for the
response distribution. All involve more than two parameters and are considered
generalizations because, for each, special cases result in common response distribution
forms such as the normal and logistic. When the response distribution form is not
known, a more general parametric model lends greater credence to the resulting
estimates [Prentice 1976].

1.4.2 Design

An experimental design determines the levels of stimulus to be considered and the
number of subjects to be tested at each level. Both fixed and sequential designs are
used in sensitivity testing. Which approach is preferred depends on many factors
including the experimenter's knowledge of the response distribution, the number of

6



available subjects, the quantile of primary interest, the time allotted for testing, and
the practicable range of the stimulus. For estimation of extreme quantiles, the
majority of the literature suggests the implementation of a sequential design.

Some notable exceptions to this rule are the fixed designs of Chernoff [1962], Little
[1976], and Hoel and Jennrich [1979]. Chernoff determined designs which minimize,
assuming a normal response distribution, the asymptotic variance of x1,. They are
discussed in more detail in Section 2.2.2. Little suggested allocating samples according
to linear regression techniques. From P(x) = F(a + i7x) consider that F (P(x)) is a
linear function in x. His strategy consists of allocating samples to two stimulus levels
corresponding to moderately high and low probabilities, respectively, in proportions so
as to minimize the variance of the extrapolated extreme quantile estimate. He
developed the designs for the normal, logistic, and extreme value distributions. Hoel
and Jennrich also approached the problem from a regression standpoint. They used
an optimal extrapolation design for a Chebyshev regression model to allocate samples
for the estimation of lower extreme quantiles. The response distribution form for
which this was done is given by

-E x
P(x)=l-ej'o

Since all of these optimal designs were based on a parametric assumption, their
applicability should depend, at least partially, on that assumption. They also addressed
the robustness issue. They considered two situations where only the family of P(x)
was chosen correctly. Altering the coefficients had little effect on the selection of an
optimal design for the two cases examined.

Returning to sequential strategies, one advantage is their ability to reliably allocate
more samples in the region of interest, that is, near the quantile to be estimated. We
say more samples because sequential procedures generally tend to converge to the
region of interest if not to the quantile itself. This ability need not be tied to a
restrictive parametric assumption, and the importance of this property in relation to
optimal designs is discussed in Chapter 3. We introduce a sequential procedure in
Chapter 2 based on one of the designs which follow.

The best known designs are the work of Dixon and Mood [1948] and Robbins and
Monro [1951]. Neither were intended for use in extreme quantile estimation. Their
relevance to this task is made apparent in Chapter 2. Dixon and Mood [1948]
described the Up and Down method in reference to finding the median tolerance for a
population of explosives. The procedure calls for the prior selection of "potential"
levels of stimulus which cover the entire stimulus range and are spaced with a
common, fixed distance between levels. After the selection of an initial design point,

7



sampling proceeds (one subject at a time) by moving up one level if a nonresponse is
observed at the current level and moving down if a response is observed. With the
simplest interpretation of P(x) (the probability of observing a response) and
reasonable spacing between levels, the tendency of this design to sample about the
median is intuitive.

The Stochastic Approximation Method of Robbins and Monro [1951] locates the
quantile x1 ,o by finding a solution to P(x) - p = 0. We emphasize that P(x) is
unknown and hence this not simply a matter of finding equation roots. The procedure
is sequential and will converge to xlop under the conditions for P(x) given by (1.1).
For this reason it is also considered an estimation technique, as indicated in Section
1.4.1. Many variations of the Robbins-Monro (RM) procedure exist. See, for
example, Kesten [1958], Anbar [1978] and Lai and Robbins [1979]. However, we will
discuss only a version of the RM strategy for which convergence is delayed. This
particular strategy has performed well in Monte Carlo studies involving small samples.
See, for example, Cochran and Davis [1964], Davis [1971], and Bodt and Tingey
[1986].

The Delayed Robbins-Monro (DRM) procedure of Cochran and Davis [1964]
selects design points converging to x1wp as follows. Denote the i level of stimulus as
Xi with observation yi, where yi = 1 signifies a response and yi = 0 signifies a
nonresponse. The next design point x,. 1 for a DRM design is given by

xi+l = xi - c (yi" -),

where c is an appropriately chosen constant according to the variance of the
population. Data is collected in this manner until a reversal of response type is
observed in successive trials. Subsequent design points are chosen according to a
usual form of the Stochastic Approximation Method as

cxi+ I = xi" " (y," P),
i-k+ 1

where k is the first sample corresponding to the first reversal. The delay causes the
design to refrain from attempted convergence until some indication (reversal) of being
in an appropriate range of the stimulus is present. If starting in the tail of the
response distribution, immediate attempted convergence would be unwise, particularly
with small sample sizes.
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L4.3 Some Properties of Sequential Estimation Procedures

Though our interest is extreme quantile estimation, it is important to note the
performance of median estimators as they compare to estimators for general x10p. In
this section emphasis is given to properties of median estimators. The relevance of
those properties to extreme quantile estimation is discussed in Section 2.3.

The properties surrounding xs0 estimators are well known through theoretical and
Monte Carlo investigations. Of particular interest, are those estimation procedures
involving sequential design. The results indicate that most of the common estimation
procedures yield estimates of x50 which are accurate, precise, and robust under the
usual parametric assumptions.

Accurate estimation of x5, is possible with large or small samples. For large
samples, consistent estimation of the more general xl0op is achieved by either the RM
procedure or by maximum likelihood estimation provided the parametric form
assumed is correct. For small samples, Monte Carlo studies have shown estimate
unbiasedness for symmetric distributions. See, for example, Wetherill [1963] and
Davis [1971]. Bodt and Tingey [1986] demonstrated that good small sample
estimation is still possible when the distribution is asymmetric. Specifically, for the•A

exponential distribution the mean square error associated with x50 was comparable to
that of three symmetric response distributions. Their estimation procedure consists of
collecting data according to the DRM procedure and estimating using maximum
likelihood with an assumed normal distribution.

In contrast, although asymptotically unbiased estimates for extreme x lop are
possi'ble, small sample estimates are generally biased. Wetherill [1963] argued that
biased extreme quantile estimates resulted from small sample application of the RM
procedure. Wu [1985] and Bodt and Timgey [1987] showed small sample bias for more
recent estimation procedures, including those given by Anbar [1978] and Wu [1985].

The precision associated with x50 estimates is also better than the precision
associated with extreme xtep estimates. For example, we consider precision with
respect to the Robbins-Monro strategy. There the estimate of xt00 has an asymptotic
variance proportional to 1/{p(l - p)}, the variance achieving its mihimum at p = .5. In
small sample application, the observed precision agrees well with the asymptotic
results; Wetherill [1963] demonstrated empirically an approximate 80% efficiency for
a sample size of fifty. However, for extreme quantiles, variances much larger than
their asymptotic values resulted from the small sample application of this procedure
[Wetherill, 1976]. Numerous other simulation studies support the "better precision"
claim over a variety of parametric forms, experimental conditions, and data collection
procedures. See, for example, Rothman, et al. [1965], Hsi [1969], Wu [1985], and Bodt
and Tingey [1987].
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Robustness to parametric form is a well established property of xs0 estimators. "If
testing and conclusions are confined to a region near the 5011 point, x_., then the
experimenter can hardly go wrong with any model he uses" [Rothman et aL 1965].
Davis [1971] demonstrated robustness in a Monte Carlo study for several procedures
including the DRM. Little [1974] also showed this property for some mildly skewed
parametric forms. Thus we may claim some freedom in the selection of a parametric
form for the estimation of xso.

2. SEQUENTIAL PROCEDURES FOR EXTREME QUANTILES

Sequential methods serve as the basis for many extreme quantile (extreme value)
design and estimation procedures. The popularity of these sequential approaches
stems from their attractive tendency to converge or restrict sampling to the region of
interest, that is, near x10op. This aspect need not be linked to restrictive assumptions,
which is especially important when estimating in the tail of a response distribution.
There, parametric assumptions are often conjecture; consequently, even the general
location of x100P may be unknown. Additionally, their economy-of-subjects property
facilitates experimentation when subjects are expensive. In Section 2.1 we discuss
some prevailing sequential procedures intended specifically to estimate extreme
quantiles, and in Section 2.2 some issues regarding their use. Lastly, in Section 2.3 we
introduce a new procedure and argue its attractive characteristics with respect to the
issues raised in Section 2.2.

2.1 Current Methods

The sequential aspect of these methods refers to a one-subject-at-a-time
application of stimulus level. If only one subject is tested before selection of a new
stimulus level we call the procedure sequential. The term block sequential indicates
that additional subjects may be tested before moving on. In Sections 2.1.1-2.1.3 we
discuss sequential and block sequential procedures. In Section 2.1.3 we consider the
notion of a transformed response. Strictly speaking, methods based on transformed
responses belong to the block sequential class of designs; they appear separately and
in more detail because of their importance to our approach.

A discussion of estimation using sequentially collected data appears in Section

2.1.4.

2.1.1 Sequential Design

Straightforward binomial-based arguments support the use of most extreme value
sequential designs. For instance if we seek an estimate of xg9 then a stimulus level at
which nineteen of twenty subjects respond is of obvious interest. A sequential design
which uncovers such a stimulus level not only has provided the basis for a reasonable
nonparametric point estimate but probably also has, in the process, collected data
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about the true x95. Using such data for parametric estimation results in the avoidance
of a major pitfall of extreme value estimation--extrapolated estimates. To address the
task of collecting data in a region containing x1oop many sequential schemes play off
the binomial theme.

McLeish and Tosh [1983] offered a representative design with simple rules. As
with the Up and Down method of Section 1.4.2, they considered equally-spaced levels
of stimulus as potential design points. To collect data relevant to the estimation of Xo5
their procedure calls for an initial design point selection thought well below the x05,
where a nonresponse is the likely result. The design chooses the next highest stimulus
for subsequent design points until the sequence ends with the observance of the first
response. The process may be repeated, yielding many of these sequences which
individually and collectively hold information about the lower tail of the response
distribution.

For individual sequences, confidence that the design will collect meaningful data is
gleaned from a simple binomial exercise. Suppose that the true response function is
normal(p, o), the initial design point is ;& - 3o, and the spacing between levels is .5a.
Recognize that each observation in a sequence results from an independent Bernoulli
trial With the probability of a nonresponse known for each design point, we easily
compute the probability to be .74 that a sequence does not wander beyond the median.
Thus the preponderance of information gathered from repeated sequences concerns a
gross region of interest-the lower half of the response distribution. Judicious stimulus
spacing and initial design point selection allow for design focus on a more specific
region. Thus we can reasonably ensure each sequence will gather useful information.

The sequences possess a collective utility through shared stimulus levels. A
stimulus level shared by n sequences supports n identically distributed and
independent Bernoulli trials. These replicate observations certainly benefit
estimation, and in doing so they support more involved sequential designs such as the
Alexander Extreme Value Design [Rothman et al. 1965]. There, binomial
probabilities associated with n outcomes at some level were used to establish stopping
rules addressing the number of sequences needed.

Designs discussed by Rothman et al. [1965] include the Naval Powder Factory
(NPF), the Alexander Extreme Value, and the Rothman. The NPF and Alexander
Extreme Value designs are similar to the design examined by McLeish and Tosh
[1983] in that a sequence is formed by choosing an adjacent level, among a group of
fixed equally-spaced levels, to be the next design point. They differ from this design in
that they both employ alternating increasing and decreasing sequences with stopping
rules, though different, both in keeping with the binomial-based arguments mentioned
above.

For example, consider application of Alexander's procedure to finding x05. Denote
R

the spacing constant by 6 and the lowest level at which a response is observed by x



The alternating increasing and decreasing sequences end when n nonresponses and 0
responses have been collectively observed on x - 6 and xR - 26. The most important
feature of this design is this stopping rule. If sampling at the true x05, the probability p
that at least one response occurs out of n trials is given by 1- (1-.05) . Since the
response curve is increasing, p represents the minimum probability of observing at
least one response out of n trials for any fixed level of stimulus on [xo., x1 0]. Failure
to observe any responses suggests, with confidence afforded by the magnitude of p,
that the stimulus being tested is actually below xo5. To select n we merely choose a
valu~for p and solve. In practice, the authors suggested considering the nonresponses
at x - 6 and xR - 26 as all coming from the latter stimulus. Then the conclusion, with
n nonresponses at those two levels, is that this latter stimulus is below Xos.

An exception to the binomial-based arguments is found in the justification of the
Rothman design. The Rothman design uses no fixed levels or alternating increasing
and decreasing sequences. Rather, the next design point is derived from a constrained
maximum likelihood procedure discussed by Ayer et al. [1955]. The constrained
maximum likelihood procedure is more appropriately discussed in Section 2.1.4. Of
note is the idea of using MLEs based on the first n data points in the selection of the
next design point. This general idea is again implemented in a sequential procedure
suggested by Wu [1985] for estimation of the median tolerance.

2.1.2 Block Sequential Design

Block sequential designs provide another means for data collection. Their
justification coincides with that of sequential designs in as much as binomial-based
arguments support the use of both. They differ from sequential designs in that
replicate observations receive greater emphasis. This emphasis is achieved by
requiring, in most cases, replicate information to be incorporated in the procedure's
selection of the next design point. Replicates at the current stimulus level convey,
through the sample response probability, greater information regarding the design's
present position relative to x10ep.

Bartlett [1946] offered a design representative of several in this class. As with
other procedures the design moves among a set of equally-spaced test levels. To
gather information for small values of p, testing begins at a stimulus level thought to
be near x_. Testing continues there until two responses have been observed, at which
point the design drops down to the next lower level of stimulus. At this next lower
level the same two-response rule applies, and so on. Though more economical in
terms of subjects than most fixed designs, the Bartlett procedure requires many
samples if information regarding the extreme tail is desired. For instance, if testing at
X05 we expect forty samples to be required for two responses at this stimulus level
alone.

The n-Zill design, discussed by Rothman et al. [1965], protects against the
collection of an excessive amount of data at one level with a stopping rule; if n
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nonresponses are observed before the first response, the procedure ends. The choice
of n determines how far out in the tail "ie design is likely to move. This design begins
as the Bartlett design does, but seeks only the first response before moving down.
Additionally, it skips a level if the response occurs in the first five trials. An analogous
design for either is possible for the upper tail of the response distribution.

2.1.3 Transformed Response Design

Procedures using the transformed response rule of Wetherill [1963], studied in
detail by Wetherill et al. [1966], belong to the block sequential class; however, they
differ somewhat from other members of this class in their interpretation of outcomes.
Consider a conceptual fixed sample size n, for a given block of observations at a given
stimulus. A basic transformed response strategy partitions the 2 possible outcomes
into two sets, denoting one set a success and the other a failure. Success and failure
represent response and nonresponse, respectively, in the context of the transformed
response distribution. (Hereafter, success and failure always refer to transformed
responses, and response and nonresponse always refer to original outcomes.) Success
or failure alone, not the original outcomes themselves, determines the direction, up or
down, for continued sampling. The advantage of this approach is that it allows the
experimenter to collect data and estimate in terms of the transformed response
distribution.

First we illustrate the mechanics of a transformed response strategy for data
collection, with the estimation argument to follow. Consider the conceptual sample
size n, to be three; and define a success as the set { 111}, where 1 signifies a
response and 0 signifies a nonresponse. Choose as the sequential strategy the Up and
Down method described in Section 1.4.2. Here the design moves down one fixed
equally-spaced level upon observance of a success and up one level for each failure.
Figure 2.1 summarizes representative results for ten blocks, with stimulus level serving
as the ordinate. The response/nonresponse ordering corresponds to the testing order
of subjects within a block. The third subject in the first block failed to respond.
Consequently, the block result { 11 0 } is classified a failure. The next block, taken at
the next highest level, yields a success { 1 11 }. Note that for some blocks we
determine a failure with less than three observations. This is why we refer to n, only
as a conceptual sample size.

4 ill il

3 110 10 i l1i

1U12 10 0
0

1 2 3 4 S 6 7 8 9 10

BLOCK

Figure 2.1 Representative results for ten blocks
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To justify estimating quantiles of P(x) by estimating quantiles of the transformed
response distribution T{P(x)} we need to

1. determine conditions for T{.} such that T{P(x)} is a distribution
function,

2. show that the quantiles of P(x) can be expressed in terms of the

quantiles of T{P(x)}, and

3. provide motivation for estimation in terms of T{P(x)}.

First, we require T{'} to be a continuous monotone increasing function on (0,1], with
T{0} = 0 and T{1} = 1 to ensure that T{P(x)} is a distribution function. The
strictly-increasing condition may be viewed as a modeling convenience. Second, a
monotone increasing function is one-to-one, thereby guaranteeing the existence of an
inverse. Then through its inverse, complete knowledge of T{P(x)} constitutes
complete knowledge of P(x). Third, a judicious selection of T{.} may allow for the
estimation of quantiles more tractable in terms of T{P(x)} than in'terms of P(x).

The following illustrates the role played by the above three issues. Return to the
application of the transformed resgonse strategy in this section. There T{.} took the
form T{P(x)} = P(x) 3, where P(x) is the probability of success for a stimulus level x,
or equivalently theprobability that each of three subjects registers a response at this
leve Clearly P(x) satisfies the conditions set forth above. As a sidelight, note that
P(x) is the distnbution of the maximum order statistic from a random sample of
three tolerances. Now let tlq denote the q' quantile of T{.}, and let x1 . be the
stimulus level for which P(x) = tloq. Through the inverse relationship
T'1 [T{P(x)}] = P(x) we have

T'{-ot1 q}O] = q' 3 = P(x1OOP).

Thus, the stimulus x100P giving rise to the q quantile of the transformed response
curve is the q1/ 3 = pth quani 3of P(x). For this example note that the median of
T{P(x)} corresponds to the .5' = .7937 quantile of P(x). The value .7937 is termed
the transformed median quantile. Thus we can acquire information regarding the
extreme tail of P(x) through the accurate, precise, and robust estimation of the
median, discussed in Section 1.4.3, of the transformed response distribution.

The basic transformed response strategy described above consists of defining a
success in such a way as to transform P(x) by raising it to a positive integer power.
We may define a success in other ways leading to different transformations so long as
the conditions for T{.} are satisfied. In fact, a success need not be a partition of just
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2 n possible outcomes. Consider a strategy in which n. = 3, { 111 }is a success, { 11
0} is indeterminate as to success or failure, and all other outcomes are classified as
failures. In the case of the indeterminate outcome, the strategy requires an additional
sample; a response yields { 11 0 1 } which is classified a success and a nonresponse
leads to the failure { 1 1 00 }. Thus the strategy dictates a probability of success and
the transformation T{.} given by

T{P(x)} = P(x) + P(x)3(1 _(x)) = p(x)3 (2 - P(x)).

Some strategies, their corresponding transformations, and their transformed median
quantiles are given in Table 2.1.

Recognize two facts pertaining to Table 2.1. First, only a limited number of P(x)
quantiles appear with the strategies given. We address this point further in Section
2.2. Second, we may derive strategies for the lower tail _ ' - response distribution by

1. reversing the roles of 0 and I tc denote response and nonresponse,

respectively, and

2. reversing the actions associated with success and failure.

For example, let us employ the Up and Down strategy for small p with n, = 2. Upon
observance of { nonresponse, nonresponse }, a success, the design moves up one
level--gathering information for the transformed median response .2929, that is, the
value of p which is the solution of (1 - p)2 = .5.

Although many designs are appropriate for use with transformed responses, only
two appear in the literature. The Up and Down method acting on transformed
responses (UDTR) was introduced by Wetherill [1963]. Einbinder [1973] suggested
implementing Langlie's [1962] One Shot strategy on transformed responses (OSTR).
The One Shot strategy may be thought of as a variable step size Up and Down
approach. Robbins-Monro based designs have not been used with transformed
responses. This is unfortunate because RM based designs have bee found to be
superior performers in numerous Monte Carlo investigations. Use of n alternative
design in conjunction with transformed responses constitutes a portion of the method
introduced in Section 2.3.

2.1.4 Estimation for Sequential Procedures

In this section we discuss the estimation techniques proposed for use with the
above sequential procedures. Usually, more than one estimation technique fits well
with each design, but all of the designs draw from among the same few estimation
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Table 2.1. Transformed Response Strategies

nc Success Failure Transformation Transformed Median

2 11 10,0 p2  .7071

3 111, 1101 1100, 10,0 p3(2-p) .7336

3 111 110,10,0 p3  .7937

4 1111,11101 11100,110, 10,0 p 4(2 -p) .8041

4 1111 1110, 10, 10, 0 p4 .8409

5 11111, 111101 111100, 1110, 110 p5(2-p) .8460

5 11111 11110, 1110, 110, 10, 0 p5  .8706

6 111111 111110, etc. p6 S909

7 1111111 1111110, etc. p7  .9057

8 11111111 11111110, etc. p8  .9170

9 111111111 111111110, etc. p9  .9259

10 1111111111 1111111110, etc. p10 .9330

14 11111111111111 11111111111110, etc. p14  .9517

NOTE: In this table p(x) is denoted p.
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techniques. For this reason we structure the section according to the principal
estimations used, noting for which designs the estimations are appropriate. For
discussion purposes interest rests in the lower tail of the response distribution.

The next lowest stimulus x -6 below the lowest stimulus yielding a response xR

gives a rough nonparametric estimate for lower threshold values. This estimate
depends entirely on the rationale underlying the design implemented. Specifically, it
relies on both stopping rules to determine what will be considered the lowest response
stimulus and the step size 6. For example, consider the n-Zill design. Recall that the
decreasing sequence stops at the first level in which n nonresponses have been
observed without a response. Let us estimate the lower threshold with xR- 6.

R
Sampling at xlO( , the probability that the strategy chooses x,, P to serve as xR . 6 is

given by (1 - p) . Thus the choice of n greatly influences the estimate value x - 6.
The selection of n, that is, choice among practicable n-Zill designs stochastically
determines the region in which xR - 6 is likely to fall. The spacing 6 has fairly obvious
consequences. A 6 too small results in a more refined estimate but at the expense of
additional samples likely to be necessary for a greater number of levels considered. A
6 too large results in a less refined estimate. Informed selection of 6 requires
knowledge, usually unknown, of the scale of the response distribution.

RDesigns appropriate for use with x - 6 include all of the sequential procedures of
this chapter, maybe with minor changes, except possibly the Rothman and OSTR
procedures. The requirement for use is only that x - 6 is a reasonable estimate in
consideration of the design behavior. By reasonable we mean that a stopping rule for
a sequence or a number of sequences is likely, according to the Bernoulli response
probabilities, to result in a x -6 close to the quantile of interest. Minor changes
entail the creation of such stopping rules for designs which have none except for
sample size limitations. The reason for excluding the Rothman and OSTR is that
their variable step sizes dictate an uncertain distance below xR for the estimate value.
For each of the other designs stimulus levels are equally spaced.

The estimation procedure discussed by Ayer et al. [1955] yields MLEs for the
response probability associated with each stimulus level tested. Denote this
probability P(Xi), and assume that

P(x1 ) > P(x2) ."> P(xn) (2.1)

for decreasing levels xi, i = 1, 2, ... , n.

For stimulus xi denote the number of responses by ri and the proportion of responses
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by P(xi)* = ri/n. The MLEs pV(x), pV(x), .. PV(x)fOr P(xj), P(x2), ".,P(xn)
are assigned as follows. If the sample pr9portions P(xi) conform to the constraint
expressed in (2.1), then set Pv(xi) = t(xi) ,i = 1, 2, ... ,n. If P(xi) <P(xi + 1) for
some i = 1, 2, ... , n - 1, then set P (x.) equal to P ,xi + 1), and compute their
common value as the ratio (ri + ri + 1)/(ni + n, + 1). This single new sample ratio
replaces P(xi) and P(xi + 1) in the sequence leaving n - 1 ratios. If the sequence of n -
1 remaining ratios conforms to the initial constraint, we may stop. If not, repeat the
procedure until the desired ordering is obtained.

The above algorithm ensures finding MLEs for certain response probabilities, but
it does not directly address estimation of specific quantiles chosen in advance.
Rothman et al. [1965] employed linear interpolation for this task. This general
procedure is recommended for use with the Rothman design and the Alexander
Extreme Value design, but it could be used with other designs of this chapter. We
illustrate the technique with partial results from an Alexander Extreme Value design.

Suppose we wish to estimate xo5 using the following data. The stimulus levels
x, i = 1, Z " 5 correspond to {Z 1, 0,-1,-2 }, and the ordered set

1i 0 1 0 02' 2' 6' -, - } are the respective P(x)'s. Since P(1)* < P(0) we let

pV( 1) = PV(0) = 1/8 to satisfy the order constraint and arrive at MLEs for the

response probabilities. Linear interpolation between pV( 0 ) and pV( 1) with respective
probability estimates 1/8 and 0 yields an estimate stimulus level of -.6 for the xo5.

Maximum likelihood estimation is the most commonly used method for estimating
extreme quantiles. If we assume a two-parameter family of distributions we may
proceed as in Section 1.4.2, solving (1.2) for a and q and (1.3) for the quantile of
interest. Extreme quantiles were historically estimated in this fashion, usually with a
normal or logistic distribution assumed for P(x). The designs of this chapter all
produce data suitable for use with this technique.

Two computational considerations exist with this approach. First, the estimates
need not exist for each set of data. Conditions guaranteeing MLE existence are
discussed in detail in Chapter 3. Second, generally (1.2) cannot be solved directly for
the parameter estimates as is the case for normal and logistic assumptions. Thus, we
must rely on iterative schemes such as the Newton-Raphson process or the Method of
Scores. Either method, if multiple roots exist, may converge to a root which does not
correspond to the maximum. Alternatively, either may fail to converge to any root.
To the latter issue DiDonato and Jarnagin [1972] offered an iterative approach
guaranteeing convergence to the global maximum under the normal parametric
assumption. Data should be collected with both of these considerations in mind.

Parametric forms with greater than two parameters may also be used. Einbinder
[1973] used a three parameter Weibull distribution for P(x). He collected data
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according to the OSTR strategy and then formed MLEs of the three parameters.
Finding estimates in the three parameter case can be more complex when iterative
procedures are necessary. One method involves searching over a reasonable
parameter space for one estimate, optimizing at each point with respect to the other
two parameters. Justification for parametric forms such as the Weibull was
mentioned in Section 1.4 and emphasized in Section 2.2.

McLeish and Tosh (1983] estimated in terms of a first-response distribution.
Recall that they proposed data collection in increasing sequences of equally-spaced
stimulus levels until the first response. The first-response stimulus xN depends on the
initial stimulus x1, the stimulus spacing 6, and the range of stimulus levels (N - 1)6.
Assume that the response distribution P(x) is logistic with parameters r and w;

P(x) = (1 + e-"4) "-

They could, by maximum likelihood, have estimated r and w directly by processing
each stimulus/response data point through (1.2). Instead they chose to first
summarize the information from each sequence in terms of x1, 5 and (N- 1)6, and
then to estimate shared parameters according to the first-response distribution.

Given x1 we need only the range of doses (N - 1)6 to determine the first response.
After making a continuity correction of 6/2 they approximated the distribution of
D =(N - 1/2)b with a continuous distribution. Specifically, for 6 -- 0 and
x1  -oo, ewD - 1 has an approximate exponential distribution with mean l/A, where

The approximation is good when x1 _<x0 p and 6< .1w [McLeish and Tosh 1983].
From the experiment, xi and 6 are known, and the parameters r and w, shared between
the logistic and first-response distributions, may be estimated. Realizations of D are
processed through the log-likelihood equations from the approximate first-response
distribution to yield MLEs for r and w. Then for small p, x1 , for the assumed logistic
response distribution is computed as a function of and ). It is important to note that
this estimate is not computed directly from the data, but through a summary of the
data.

Wetherill et al. [1966] explored the use of w as an estimator for the UDTR
strategy. In the usual implementation of the Up and Down strategy, there exist
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several pairs of successive levels for which the response changes, that is, reversals
occur. Define wi as the average stimulus level corresponding to the it pair. _Only
these values w holding reversal information are averaged together to form w, an
estimate of the median. For transformed responses, reversals depend on success and
failure. Referring to Figure 2.1 in Section 2.1.3, the wi occur as
{ 3.5, 3.5, 3.5, 1.5, 2.5, 2.5 }, and they are averaged to form w = 2.83. Its interpretation
in terms of P(x) is given in Table 2.1 as the transformed median quantile .7937.

The estimator w is based on response type as well as the stimulus levels tested.
When Dixon and Mood [1948] introduced the Up and Down method, they included a
simple estimator. With a normality assumption they showed that the response
distribution parameters may be estimated using maximum likelihood. However, the
solution must be arrived at iteratively. To overcome this computational inconvenience
they proposed a simple technique of stimulus level averaging to approximate the
location estimate. Brownlee et al [1953] followed with alternative dose-averaging
methods which took into account when in the sequence each stimulus was tested; for
instance, in one average they excluded the first stimulus level tested, claiming that
since it was chosen by the experimenter it did not contain information about the
location parameter. The w estimator screens the data further through the
consideration of response type. A reversal of response type indicates with limited
certainty that the two stimulus levels involved straddle the response distribution
median. Thus each average wi can be viewed as an estimate of this median with w
serving as a composite estimate. Besides the intuitive appeal, support for w relies
primarily on its favorable Monte Carlo performance relative to other dose-averaging
techniques [Wetherill et al. 1966].

Note that using w with the UDTR strategy constitutes a departure from the
conventional estimation procedures for extreme quantiles. The estimated median
belongs to the transformed response distribution and not to the original tolerance
distribution. Consideration of an alternative estimator under transformation
comprises a portion of the new proposal in Section 2.3.

2.2 Critique of the Issues in Estimation

In the previous sections, while introducing various techniques, we have touched on
several of the issues in extreme quantile estimation. In this section these issues are
discussed in more detail. We structure the discussion around the type of estimation
procedure employed, noting specific design considerations where appropriate. The
estimation procedures are considered to be of three types: nonparametric, parametric
maximum likelihood, and summary information. Summary information refers to
transformed response strategies and the first-response approach. For each estimation
procedure we discuss problems and literature attempts to address those problems.
The discussion of this section is intended to lay groundwork for the new procedure
given in Section 2.3.
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2.2.1 Nonparametric Procedures

In this section nonparametric procedures include the next lowest stimulus below
the lowest stimulus yielding a response, xR -6, and the constrained maximum
likelihood estimation of Ayer et aL [1955]. The interest in a nonparametric approach
stems from the limited knowledge experimenters have regarding the tail of the
response distribution. Remember that one reason sequential procedures are desirable
is that even the general location of x10,, is unknown. Nor is the parametric form
known, at least for the distribution tail. Nonparametric estimation overcomes this
problem, though possibly at some expense. The two nonparametric techniques share
three primary concerns, namely, stimulus level spacing, sample size requirements, and
the practicability of inference beyond simply the point estimate for the quantile of
interest.

Large gaps between adjacent stimulus levels lead to an estimate which may only
roughly approximate the quantile of interest. Consider the sequential designs where 6
is the equal spacing between stimulus levels. A large value of 6 relative to the
response distribution standard deviation may

1. inflate the root mean squared error associated with xR -8
depending on the actual stimulus level placements, and

2. prevent collection of meaningful data for constrained maximum
likelihood estimation.

To see both let the response distribution be normal with mean ; and standard
deviation a. Let the potential stimulus levels be taken from - a ± 2kc,
k = 0, 1, 2, ... , and estimate x.02 corresponding to the stimulus level s- 2a. Note
that since the potential stimulus levels exactly straddle x.02, the nearest stimulus level
ppssible is a = 6/2 distance away. Then the root mean square error associated with
x -6 can be no smaller than 6/2. Alternatively, suppose that the constrained
maximum likelihood approach dictates a linear interpolation between;& - a and 1i - 3a.
Linear interpolation of the asymptotic values of the estimates yields an estimate of

- 1.4a. Arguments follow similarly for stimulus levels with variable spacing.

One can argue that the above example is contrived and 8 and stimulus level
placements need not be so poorly chosen. However, rational choices for each require
information about the unknown scale parameter and the unknown quantile of interest.
Many authors point this out including Wetherill [1963], Rothman et al. [1965], and Hsi
[1969]. They each presented Monte Carlo evidence to suggest appropriate choices for
each, but the choices were expressed as a function of the two unknowns. Preliminary
sampling and parametric estimation could provide initial values for location and scale.
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However, in keeping with the nonparametric intent, achieving better estimates
requires improving the stimulus spacing irrespective of parametric estimates of the
unknowns.

To address this task the spacing between levels may be gradually decreased based
on the sequentially gathered information, or the spacing may be intentionally chosen
to be narrow so that a finer resolution of information is obtained. Potentially this
creates another problem, increased sample sizes. Consider that narrow spacing is
likely to increase sample sizes over the entire range of stimulus levels tested, but the
nonparametric estimates of this section draw upon only one or two of these levels to
make their estimates.

Sample size is an important consideration when using these nonparametric
estimation procedures. In most experimental environments we are limited in some
way with respect to sample size. The limitation is usually expressed in terms of a cost
such as time or number of units destroyed. The latter was partial motivation for the
first-response approach. This cost is offset by some measure of information gain.
Above we note that narrow spacing is likely to result in an increased number of
samples. Additionally, large sample sizes are required to satisfy the stopping rules
which we mentioned. We say the sample sizes needed are large because the stopping
rules depend on the estimation of very small or very large probabilities with binary
data. Thus, if we wish to adequately estimate some target quantile using a
nonparametric approach, we must be prepared to collect a large number of samples.

Another concern is that the nonparametric estimators only provide reasonable
point estimates for one specific quantile of interest. Although in many applications
this may be sufficient, more complete information regarding the response distribution
would be useful. For example, a chemical test is designed to respond to measurable
quantities of some substance. The response probability increases with the quantity of
substance. For the purpose of establishing a reliability standard the experimenters
need to know the quantity of substance corresponding to a response probability of .85.
A nonparametric approach will allow for such a determination, but in this case it is
also reasonable to explore the behavior of the chemical test in a region about xss.
Perhaps the ordered estimates in the constrained maximum likelihood approach can
lend some insight in this regard, but there only some bounding can be accomplished.
A procedure capable of estimating x., and neighboring quantiles is more desirable.

The performance of these estimators is open to question. Rothman et al [1965]
claimed that nonparametric estimation for the Alexander Extreme Value design
performs about as well (having approximately equivalent root mean squared error) as
parametric procedures using the true parametric assumption. The parametric
procedures they referred to consist mainly of invoking maximum likelihood estimation
on data collected by a variety of sequential designs including the Bartlett and n-Zill.
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However, the Monte-Carlo study supporting this claim was limited to one hundred
iterations, and the exact manner of performance comparison with regard to equal
sample sizes, etc., is not clearly stated.

2.2.2 Parametric MLE Procedures

The issues concerning parametric maximum likelihood estimation of extreme
quantiles include response distribution assumptions, design, limited resources, and
computational factors. Much of the extreme value literature consists of attempts to
resolve problems involving these factors, although not exclusively in consideration of
maximum likelihood estimation. In this section, we discuss these issues in a
chronology roughly paralleling their treatment in the literature. The time-ordered
presentation also provides a convenient framework for relating, according to these
issues, the designs of Section 2.1.

Prior to the interest in extreme quantile estimation, the favored response
distribution assumptions were the normal and logistic distributions. Bliss [1934ab]
introduced the normal response assumption for use in bioassay. Some practical
applications in which the response curve has been extensively studied support this
assumption. However, more generally "the central limit theorem gives reason for
hoping that conclusions based on the normal assumption will be close to the truth
when means of several observations are involved" [Finney, 1978]. Berkson [1944]
argued on behalf of the logistic assumption, citing its similarity to the normal
assumption and its greater mathematical tractability. Other forms considered include
the uniform, Cauchy, and angle (sin'1 Vlp") transformations. Since they all closely
approximate the normal over (25, .75), shape was not a serious discerning factor in
choosing among them. Borne out in later studies, cited in Chapter 1, many median
estimators, including maximum likelihood, prove robust among these and other
response distribution assumptions. This fact deprives the distribution assumption
issue, in terms of median estimation, of any practical significance.

The other three issues-design, resources, and computational factors--stimulated
little debate. The probit approach, Bliss [1934ab], became the standard in design and
analysis for studying dose response curves. Since much of the early work focused on
biological applications, data was readily available. The common design with probit
analysis involved sampling many stimulus levels over the practicable stimulus range,
gathering multiple observations at each level Analysis consisted of an iterative
formation of linear regressions meant to bound the true linear relationship assumed to
exist between the stimulus and F't(p). Here F(-) represents a normal distribution with
mean 5 and variance 1. The mean value was selected to avoid potential confusion
possible with negative values of the stimulus; the stimulus is often a necessarily
positive term such as drug dosage. Usually, a couple of iterations sufficed; and they
could be accomplished graphically, providing no great computational concern.

23



The issues of this section became more important in the late 1940s concurrent with
a wider application of sensitivity analysis. In the physical sciences, the limited
resources and interest in extreme quantiles motivated Bartlett [19461 to suggest the
design given in Section 2.1.2. Bartlett recognized that it was important to sample near
the quantile being estimated, and he suggested doing so with a sequential strategy.
Robbins and Monro [1951] further advanced the concept of sampling about a general
desired quantile with their Stochastic Approximation Method. All of the strategies
given in Sections 2.1.1-2.1.3 adhere to this basic idea, citing binomial probability
arguments as support.

Justification in terms of maximum likelihood estimation for sampling in the region
of interest was not given formally until 1962. Chernoff [1962] examined, for the
normal assumption, the asymptotic variance of x10. He developed optimum fixed
designs which minimize Var(x 1o.P), or Var(A + 2,5 where the inverse information
matrix provides the necessary variance and covariance values for A and &. For
quantiles x100P in the range x06 to x94 the strategy suggests allocating all samples to the
stimulus corresponding to x0P,. For quantiles outside this range the design selects
two stimulus levels ;& - 1.57a add s + 1.57a in proportions Z P - 1.57 to Z + 1.57. His
results suggest, except in the case of quantiles outside (*. x,4), that when using
maximum likelihood estimation with a normal assumption, data should be collected in
the neighborhood of the target quantile.

The practical application of this design is difficult for two reasons. First, the
optimum stimulus level selections depend on the unknown parameters ;t and o.
Chernoff [1962] suggested using a preliminary design to estimate i and a. These
estimates are substituted for the true parameters in the design point selection.
Second, for quantiles between x06 and x94 the design samples at only one level of
stimulus. This results in a failure to meet the existence conditions for the MLEs, thus
preventing estimation of xo P. A partial design solution to these problems exists in
the sequential strategies of Sections 2.1.1 and 2.1.2. We discuss in Chapter 3 how one
of those strategies can be used to overcome these problems.

Much of the preceding discussion focuses on design and estimation when a normal
response function can be assumed. However, rarely if ever are distribution behaviors
known to the extent that distributional assumptions can be made in consideration of
the taiL Thus difficulties in estimation with an incorrect parametric assumption may
result. Two methods of accounting for the uncertain parametric form are

1. estimate without benefit of a specific parametric form, or

2. estimate with a parametric form considered robust among many possible
parametric families.
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Many of the procedures discussed in Section 2.1, not requiring parametric maximum
likelihood, approach the problem according to method one. We discussed issues
concerning the use of early nonparametric techniques in Section 2.2.1, deferring
discussion of the UDTR strategy issues until Section 223. Several researchers have
proposed robust parametric forms or stimulus transformations in the sense of method
2. See Einbinder [1973], Prentice [1976], little [1976], Copenhaver and Mielke [1977],
Egger [1979], Aranda-Ordaz [1981], Guerrero and Johnson [1982] and Morgan [1985].
All models possess three or four parameters and include forms similar to the logistic
model as a special case.

The argument for preferring one of these robust parametric forms follows. First,
these robust families are able to emulate the common logistic model. Their
performance relative to maximum likelihood under logistic and normal assumptions
appears to be good. Second, except for the distribution of Copenhaver and Mielke
[1977] the response distributions may assume asymmetric forms. Third, the shape of
the tail of the distribution is more flexible-thought to be important when the quantile
to be estimated is an extrapolation of the data. Thus, the new distributions constitute
a more general class of the distributions already used.

A selection from among t- ,bust parametric forms must take into account the
following points. The design afluence on estimation with these distributions has not
been studied. Instead, the'" performance on available data sets serves as a basis for
comparison. Also, nc~ae of the distributions proposed have distinguished themselves
relative to the oters. In light of this, the practical concern of computational ease
becomes an issue. Estimation in each case requires good computational facilities.
Some require Newton-Raphson iterative solutions for a three parameter model while
others require the use of a numerical algorithm, GUM [Baker and Nelder 1978].

2.2.3 Summary Information Procedures

Summary information was alluded to in Section 2.1 as data condensed from the
raw quantal form. Approaches to extreme quantile estimation given by Wetherill
[1963] and McLeish and Tosh [1983] each use summary information. In this section
ye discuss issues concerning design and estimation as they relate to this summarized

data. We concentrate on Wetherill's approach since it is the foundation for our design
strategy.

The design issues for these procedures are similar to those given in Section 2.2.1
for nonparametric procedures. Stimulus spacing and starting value potentially affect
the informational content of the data collected. This is apparent in the approach of
McLeish and Tosh [1983], where the approximate distribution used for estimation
arises in the limit as the spacing width tends to zero and the initial design point tends
to negative infinity. The Up and Down strategy, the design used in Wetherill's [1963]
UDTR, also depends on stimulus level spacing. Einbinder [1973] suggested using
Langlie's [1962] "One Shot Test Strategy" instead of the Up and Down method in an
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effort to diminish the potential for spacing problems. However, the advantage to this
is suspect since Langlie's strategy has not been shown to be clearly superior.

Estimation is handled differently by these two methods. McLeish and Tosh [1983]
used an MLE for which the original response distribution assumption is logistic.
However, by restructuring the problem they were able to estimate its parameters
using an exponential distribution. They showed empirically that their procedure
makes better use of the collected data. The importance of the logistic assumption has
not been addressed in detail though reasonable robustness to distributions
proportional to ce" f is expected [McLeish and Tosh 1983]. Empirically, normal
response distribution quantiles are estimated well with this approach. On the other
hand, the UDTR strategyrequires no distributional assumption since it estimates
using the nonparametric w estimator. Since the quantile of interest is always the
median quantile on the transformed response curve, the estimate should be reasonably
robust. An important shortcoming of the UDTR is that it can provide only estimates
of quantiles such as those listed in Table 2.1. Thus the experimenter is somewhat
restricted in his ability to draw inference regarding the response distribution.

2.3 A New Approach to Extreme Quantile Estimation

In this section we introduce our new approach. We propose a specific technique in
Section 2.3.1 which is intended to be a melding of work concerning estimation of the
wedian to that of extreme quantile estimation. We include a preliminary justification
for this technique, noting the suspected advantages according to the issues addressed
in Section 2.2. Section 2.3.2 outlines the results pursued in this paper. Complete
success cannot be claimed for each, but contributions to this area are made.

2.3.1 New Approach Application and Preliminary Justification

The transformed response curve of Section 2.1.3 is an attractive alternative to the
original response function. It reduces the problem of extreme quantile estimation to
the more practicable problem of estimation at or about the median. There, estimation
is fairly robust to response function form. This robustness is essential given the lack of
knowledge about the distribution taiL Additionally, Wetherill et al. [1966] showed the
empirical performance to be good even when used in conjunction with a design and
estimation technique which arguably could be improved upon. Thus, we propose to
design and estimate in terms of the transformed response curve.

Among the available sequential design and estimation procedures, we feel that a
hybrid strategy has much promise to be successful here. We intend to collect data
with the Delayed Robbins-Monro (DRM) design and estimate quantiles of the
transformed response curve with parametric maximum likelihood. This procedure has
shown good empirical performance relative to several other common methods [Bodt
and Tingey 1986]. It is robust to the selection of both initial design points and grossly
inappropriate values of the constant c. The sequential nature of the design makes it
resource-efficient. In terms of median estimation it is fairly robust to asymmetric
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response distribution forms--important since it is quite likely that the transformed
response curve will be asymmetric. Additionally, using this method we can estimate
quantiles other than those listed in Table 2.1. Computationally, with commonly
available facilities, it is a feasible approach. Thus, we propose to use DRM as the
design and parametric maximum likelihood as the estimation strategy.

The use of parametric maximum likelihood requires the selection of a parametric
form to represent the response distribution. Certainly, if we do not know the form of
the original response distribution we will not know the form of the transformed
response distribution. Our approach is to select one which can assume many shapes.
A three parameter model offered by Prentice [1976] for the original response
distribution can be used here for the transformed response distribution. It is given by

.(x.)

T{P(x)}={ 1 + e ,}-" (2.2)

Referring back to Table 2.1 note that many of the suggested transformations are of
the form T{P(x)} = P(x)m. In consideration of these transformations, if the common
logistic assumption were valid, (2.2) exactly represents the form of the true T{P(x)}.
This is an appealing feature. We refer to (2.2) hereafter as the power logistic
distribution. Additionally, this distribution may assume asymmetric shapes depending
on the value chosen for m, allowing the estimation procedure necessary flexibility.
Thus, we propose to use the power logistic distribution for our parametric assumption.

2.3.2 Theoretical and Empirical Results Sought

In Chapters 3 and 4 we discuss the properties of the proposed scheme which will
be hereafter referred to as the Power Logistic Transformed Response (PLTR)
strategy. In Chapter 3 we address several points analytically. We show the
development of x100, for the PLTR and give its asymptotic distribution. Questions of
estimate existence m finite samples and optimal design are also considered. In
Chapter 4 we subject the scheme to a feasibility study in the form of a Monte Carlo
exercise.

3. SOME ANALYTICAL RESULTS

The new approach to extreme quantile estimation, introduced in Section 2.3.1,
joins three independent concepts: maximum likelihood estimation assuming a power
logistic response distribution, the Delayed Robbins-Monro design, and the strategy of
transformed responses. Each of these three possess their own set of desirable
properties when brought to bear on problems of this type, but only those properties
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consonant with the combined approach goal of extreme quantile estimation are of
interest. Since it is maximum likelihood which delivers the final quantile estimate, we
must relegate DRM and transformed responses to strictly supportive roles where their
properties are important only in contributing to the collection of good data. By good
we mean data about the target quantile permitting maximum likelihood estimation.
This chapter's structure reflects the belief that the analytical results are most
important as they pertain to the final quantile estimate. Consequently, maximum
likelihood serves as the structural focus, and DRM and transformed responses are
addressed as they support maximum likelihood.

Chapter 3 consists of two sections. Section 3.1 develops maximum likelihood
estimation for the power logistic distribution. Included in the development are the
quantile estimators, their asymptotic properties, and some results regarding existence.
Section 3.2 determines an optimal design and argues that the DRM strategy, acting on
transformed responses, collects data in the spirit of optimality.

3.1. Maximum Likelihood Estimation Assuming the Power Logistic Distribution

In this section we detail the development of the MLEs for extreme quantiles.
Recall that extreme quantiles for the true underlying response distribution are,
through the strategy of transformed responses, quantiles about the median of the
transformed response distribution. An assumption is that this transformed response
distribution can be reasonably expressed in terms of the power logistic distribution
suggested by Prentice [1976]. Thus MLEs for quantiles about the median of the
power logistic distribution are used to estimate the desired quantiles of the underlying
response distribution. In Section 3.1.1 we define the estimator and develop its
asymptotic variance. In Section 3.1.2 we address estimate existence in finite samples.

3.L1 Maximum Likelihood Estimator for x0op

Let the transformed response distribution T(x) have the form

T(x) = (ey/(1 + e ) }m, (3.1)

for location As E (-co, oo), scale a E (0, oo), and shape m E (0, oo), where
y = (x - p)/o Vx E (-co, op). Hereafter, we refer to the parameter space for m as fli ,
for A and a together as ft, and for all three together as f?3. We have dropped the
notation T{P(x)} of Section 2.1.3 for this section because it emphasizes the
mathematical transformation of responses. Here it is important to emphasize that the
transformed response distribution has an assumed form, given by (3.1), and is not
simply the range of a transformation.
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The likelihood function arises as follows. Let si and bi represent the number of
successes and trial blocks, respectively, at stimulus x. Recall that the strategy of
transformed responses requires samples to be taken block sequentially until a success
or failure is observed. The probability that a success occurs at stimulus xi is the
probability xi exceeds the tolerance for each subject tested in this trial block, that is,
each subject responded to the stimulus. This probability is modeled by the
transformed response distribution and is given by T(xi), denoted simply Ti. Thus,
assuming subject independence, the probability of st successes in bi trial blocks follows
the binomial distribution with success probability Ti. It follows that the consideration
of k levels of stimulus leads to the likelihood function expressed as

L(s;)= 1I j Ti'(1 .T)br, (3.2)

where s = {si; i = 1, 2,..., k), and 0 = {01 = q2 =, 03 = m}, the parameters on
which the success probabilities Ti depend.

The parameter values which maximize (3.2) can theoretically be determined in a
straightforward way through the use of the log-likelihood. The log-likelihood, denoted
1, corresponding to (3.2) is given by

k )
I = log-L (s: - {lo[s + si log (T) + (bi - s) log('- Ti)}.

i,,i

The first derivative of the log-likelihood with respect to 0 is given by

a k

- - E {si/T i - (bi - si) / (1- T)} {8i/(W}. (3.3)

J9 i-i

Solution of the system of equations {-, , } = 0 with respect to 9 yields the
1 2 3 -

desired estimates.
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It is useful to pause at this point to define two notational conveniences. First, we
define a function G(x) = e/(1 + e). Note that G(x) has the form of a logistic
distribution. Second, each of G, T, and y is a function of the stimulus x, but in what
follows the x is omitted in the notation. When a specific i th stimulus, xi, is indicated,
the subscript i will accompany G, T, and y.

The first deviatives of I with respect to each of the O.'s differ only by 8T./aO. The
representations of oT/ag for each parameter t4 a, and m are now developed for their
inclusion in (3.3). The deivative of G appears as

dG/dy = [ey/(l + ey)] [1/(l + ey)] = G(i - G) (3.4)

Then remembering y = (x - ;)/cv it follows from (3.4) that

aGla = G(l - G) ayla = G(i - G) (41o), (3.5)

aG/&r = G(1 - G) ay/& = G( - G) (-Y/q). (3.6)

Noting that T = Gm and using (3.5) and (3.6) we have

cT/aM = m G' ZG/ p = m T(i- G) (- l/a), (3.7)

r/a7=mG = m T(1- G)(y/o), (3.8)

aT/am = T log (G). (3.9)

The explicit form of (3.3) for each parameter can now be given. Combining (3.3)
separately with each of (3.7) - (3.9) yields the appropriate derivatives
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--.. b ,.r Ti:-0C /(3.10)

kr si bi Ti

arla" ? I I- m TJ (1 -G) (-y11) (3.12)

i-i1 1

ki,-1 T

The solution of the system formed by setting (3.10) - (3.12) equal to 0 yields the MLEs
, a, and ni. The numerical approach used to deliver the estimators is discussed in

Chapter 4.

The pth quantile, x100,, may be estimated using the above results. We simply solve
(3.1) for the stimulus x for which T(x) = q. Recall from Section 2.1.3 that the stimulus
corresponding to the qth quantile of T(.) is the pt quantile of P(x), the tolerancedistribution. Then we may write the MLE for x:,op as

A1oop (ql'/-1)} (3.13)

by the invariance property of maximum likelihood.

The asymptotic properties of follow from maximum likelihood. The
estimator X10op is consistent, efficient, an normally distributed. The asymptotic

variance of X2, may be approximated from a truncated Taylor series expansion of
X1ooP about (1, a, m), yielding

(XoP) =  IAT -A

where c is the gradient vector of0op and I is Fisher's Information. The gradient
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vector is easy to compute and is given by

C= 1,-log (qInI -1),. l A'2 log (q)/(1 - ql'/n}.

Remaining is an expression for the information matrix I.

The information matrix is given by 'jh = E(--.-). The product of the two

first derivatives is expressed by a

ar a k s.- bT1 2

r l 1(- 1  J a. i (a{~ilash} +ap a, ,.,_) { T

kks. 'D.. . { Tr("Tr)J {ar"i/ {a"r/h}. (3.14)

1 r i (1-Ti)J Tr (1_ r)JI

I:, is then the sum of the expectation of each of these two expressions. Consider the
second one first. Since each trial, and hence each trial block, is considered
independent, the random variables si and sr for i # r are independent also. Note that
the random variable si is binomial with expectation biT. Then

s1 -b T~ ________~j

E I { TT 1 0,, -Ti T{ ;71 - o,

and by independence the expectation of the second term of (3.14) is zero. Thus Ih
consists only of the expectation of the first term. Noting that

E (s') = b. T. (1-Ti) + bi2 Ti2

we can compute
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Esi -bi Ti2 = E {b22T (1-Ti)+ bi2T2-2b2T' + bi2Ti2 = biTj (1-T).

Hence,

k

ljh - {bi/T i (1-T)} { /j} {Wi/ah}, (3.15)
i-i

the last two terms coming from (3.7) - (3.9).

3.1.2. Conditions for the Existence of MLEs in Finite Samples

In this section we establish conditions on the data guaranteeing the existence of
bounded MLEs of some of the parameters (14 a, m). It is well known that in binomial
response models the estimates, though asymptotically existing with probability tending
to 1, may not exist for certain finite samples. See for example Wedderburn [1976] or
Silvapulle [1981]. The power logistic form used here also may not admit a solution for
a particular sample. An argument built on convexity delivers the data restrictions
needed for estimation to be possible.

We begin by citing the theorem of Silvapulle [1981]. Define F (a + ix) as a
distribution function dependent on the linear parameters (a, 17), and assume that there
are at least two distinct stimulus levels. The MLE of (a, 17) is denoted (&, 0). For each
response type, form ordered levels of the stimulus, and denote them by
X(1) I X(2) , ... , x,, where j = 0 or 1 according to the observance of a nonresponse or
response, respectively. So as not to confuse response type with stimulus level order,
we replace the subscript, (1), with (min) and the subscript, (n), with (max). From Wu
[1985], the condition 11 is defined as responses and nonresponses occurring on the
stimulus axis in one of the following three ways.

1. If x 1 (min) # xl(,,) and X0(min) #X0(m a),

then (xi(), x(m)) n (x0(ri)' x (m1)) 0.

2. Ifx(m) (m) X

then X I (min) < X < XI(max)

3. If x(min) = X'(mm) = X
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thenxjmi < x* < xm

The first possibility is what engineers refer to as a zone of "mixed" results, an interval
on the stimulus axis which contains both responses and nonresponses. The latter two
address the situations in which a single stimulus induces all of the observed responses
or all of the observed nonresponses. For the special case of the two-parameter
distribution, F, Theorem iii from Silvapulle [1981] may be stated:

Theorem 3.1 Suppose that - log (F) and - log (1-F) are convex. Then (a, J) exists and
the minimum set ((&, j)} is bounded if and only if 11 is satisfied. Let us further
assume that F is strictly increasing at every t satisfying 0 < F(t) < 1. Then (4 j) is
uniquely defined if and only if 11 is satisfied.

The notion of a "minimum set" is discussed by Silvapulle [1981]. The boundedness is
with respect to the minimization of the negative likelihood, - l(&, n).

The power logistic distribution (3.1) which we have selected to model the
transformed responses has an additional parameter, m. However, for any fixed m in
1 it will be shown that bounded, unique MLEs (A a) exist for (1, a) if and only if

condition R is satisfied.

Theorem 3.2 Assume m E f1'1 is known. Then IT is both necessary and sufficient for the
bounded unique existence of (, a), the MLEs for the remaining parameters (, a) of
T.

Proof: The proof is an application of Theorem 3.1 to T. We claim that - log(T) and
- log(1-T) are convex, and we show this as Property 3.1. To show that T is strictly
increasing, consider that G E (0,1), V(1, a, m) E f? and x E (-co, oo). It follows that
dr = M Gm (1-G) 1/a > 0. Finally, the parameters of T can be expressed as a + v7x
dx

by setting a = -;&/o, 1 = 1/6. Application of Theorem 3.1 establishes the result for
(a, rv), and from the 1-1 correspondence between (a, 17) and (14 a) the assertion
follows..

Property 3.1 Both - log(T) and - log(1-T) are strictly convex.

Proof: Since both functions are twice differentiable, it is sufficient to show that their
second derivatives are positive. Without loss of generality we will differentiate with
respect to y instead of x to simplify the expressions. The chain rule and positivity of a
allow this simplification.

d -m G m ' G (1-G)
Prooffor - log(7) To begin, - [-logM] = = m (G-1). Then

d2  dy Gm

-2 -log (T)] = mG(I-G) > 0.
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Prooffor -log(l- 7) To begin.I
d -[-m ' G(1-G)] mG tm(1-G)
- -log (1- D)] = = .Letdy 1-Gn 1-G m

mG m (1-G) 
dw

w(y) = . Since w(y) > 0 Vy E (-oo, oo) it follows that - > 0

d1 . m  dy

if- [log w~)] > 0. Then,
dy

log w(y) = log (m) + m log (G) + log (1-G) - l g (1-Gm) andd dG/dy dG/dy mGm ' dG/dy dG[log w(y)] = m - + . Since - , the logistic
dy G l-G 1-Gm  dy

density, is positive aid appears in each term it is sufficient to show thatm 1 m__ '
_I - - + > 0. Combining the fractions yields a denominator

G 1-G 1.Gm

G (1-G) (1-Gm) > 0 and a numerator N = m (1-G) - G (1-Gn). It remains only to
dN

show that N > 0. Observe that lim N = m; lim N = 0. Finally consider - which
G0 GW dG dG

after simplification can be expressed (m + 1) (Gm - 1) - <0, and is strictly

decreasing. n

Theorem 3.2 establishes necessary and sufficient conditions on the data for
bounded and unique M.Es of (a, ql) providing m E fl 1 is known. In what follows, we
establish the necessary and sufficient condition for the unique existence of an MLE for
m, with (1, a)E lf known. The derivative of the log-likelihood with respect to m
appears as (3.12). In this expression, for our application to transformed responses,
bi = 1, V , and si = 0 or I corresponding to a failure or success respectively. Then
substituting bi = 1 and recalling that Ti = Gim, we recognize that a stationary point
will occur with respect to m when

logOi
dl/dm = {si" Ti} - -0. (3.16)i-Gim

The following theorem identifies a necessary and sufficient condition for the data
under which a stationary point is present and is a unique maximum.

Theorem 3.3 Assume (p, a) Efl? are known. Then the presence of at least one success
and one failure is necessary and sufficient for the unique existence of a maximum
likelihood estimator of m.
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log G
Proof: Necessity is proved first. Note that - is strictly negative,1-G=

si -T= 1- T > 0 for si = 1 (success),

and

- Ti < 0 for si = 0 (failure).

The ii" summand of (3.16) is negative if the ith stimulus block results in a success, and
otherwise is positive. Then if (3.16) is true, it is necessary that at least one success and
one failure be observed. That the presence of at least one success and one failure is
sufficient is proven by showing a unique solution to (3.16) exists and represents a
max~imum. Consider the case in which both successes and failures have occurred.
Failures are indexed over , successes over j. Then solve

*log G.
E{sk-Tk} - .

(1-G )

It follows that

log_ i logG.
-Ti  =- (I-T?)

(1-Gm=)  j (1-G!=)

and
Gm

.logGi - E log Gj. (3.17)
(1-Gi) j

Note that the left hand side (LHS) satisfies lim LHS = -co and lim LHS =0. Further
mO mtoo

36



d (1-Gi") Gim log Gi - Gim (- Gim log G)
- LHS -logG i
dm i Gi) 2

Gm

= J(log Gi) > 0.i (l"Gi) 2

Therefore, since log G, < 0 and LHS is strictly increasing there exists a unique m
for which the log-likelihood equation is solved. That the solution must be a maximum
under the data conditions comes directly from the second derivative.

d2 d logG.-= -(sk" Tk)
dm E T (1-G')

(1-G') (0)- (log Gk) (-GM log Gk)i E {(sk" Tk)k)

log Gk
+ (-Gf log )}

(1-G')

-k)

The quantity { } is always positive. Since sk = 0 or 1, d2/dm2 will always be negative
so long as at least one failure is observed. Any stationary point must be a local
maximum. n

The above does not preclude unbounded m. In Theorem 3.4 we impose some
additional conditions in order to provide a bounded solution for m.
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Theorem 3.4 Suppose

(a) there exists bounds L, U such that Vi, j, 0<L< [GJ <U<1,

(b) there exists m such that 0<m<oo. Claim: If the parameter m and the
finite collection of probabilities (G) i and (G)1 satisfy

Gim

(t) FlogGi  - FlogGj,
i 1l-Gim  j

then there exists bounds m0 and m, such that 0< mo < m < m, <oo.

Proof: It follows from (a) that each of logG i and logG is bounded and bounded away
from 0. Further, the finite sum over j of log f the RiHS of (t), is bounded and

J Gi m

bounded away from 0. It follows from (a) and (b) that > 0 V Gi, m. Let
1- -1

< a) <(G.(a)). > denote sequences of G and (G.)., respectively, indexed

over a. Suppose iere exists <(G )j>, <(G. )i >, and corresponding <m >
satisfying (t), and in addition either (1) <m >-- o or (2) <ma> -- 0. Case (1): If

G im

<ma >- oo, then - - --+ 0, and thus LHS --+ 0. Therefore, under (t) the RHS - 0,
1-Gim

which contradicts the RHS being bounded away from 0. Therefore (t) cannot be
satisfied and < ma > -- oo. This inylies that < m > is bounded, say m < m<o. ( )

Gi

Case (2)4 If <in?>-- 0, then - -o. Thus LHS -+ -oo since logGi<0.1.Gim

Therefore, under (t) the RHS - -oo which contradicts the RHS being bounded.
Therefore (t) cannot be satisfied and <ma>--. 0. This implies that <ma> is bounded
away from 0, say 0< mo<m. (**)

Combining (*) and ( 0), 0<m<m<m, <oo. m

3.2. Robbins-Monro and Optimal Design for Estimating x100p

In this section we demonstrate the appropriateness, in application to this problem,
of the Stochastic Approximation Method of Robbins and Monro [1951]. Recall that in
our procedure, the Robbins-Monro strategy is used only as a sequential design,
supportive to maximum likelihood estimation of the target quantile. In order to show
its usefulness, we have to discuss optimal design in this problem's context, and then
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show that the Robbins-Monro strategy approximates the optimal design in some
sense. Moreover, an argument is made for its suitability in collecting data likely to
satisfy condition I1 of the previous section. This section consists of two parts. Section
3.2.1 discusses the issue of optimal design, and Section 3.2.2 argues that the Robbins-
Monro strategy acts both in the spirit of optimality and in deference to practical
concerns.

3.2.1. Optimal Design for Estimating xj0op

There are many different approaches to optimality. See, for example, Chernoff
[1979], Fedorov [1972], or Silvey [1984]. To begin we must select one well suited to
our estimation goal. Our principal concern is that data be collected to support the
power logistic maximum likelihood estimation of a specific quantile. With the
variance of the estimate as our measure of closeness, a reasonable approach is to
distribute available samples over stimulus levels so as to minimize the variance of the
estimate for each possible target quantile x0p. An approximate asymptotic
procedure which approaches optimality in this way is referred to as c-optimality by
Silvey [1980]. This section discusses a c-optimal approach presented by Wu [1987] and
its application to the power logistic maximum likelihood estimation of x10,. For this
discussion we assume that m is known. Consider the estimate for x00P to be given by
the function

g (;4 a) = ; + a {-log (q-1fm-1)}.

The elements of the information matrix I(;, a) may be taken directly from the
corresponding elements of the information matrix given by (3.15). Then proceeding as
in Section 3.1.2, the asymptotic variance of G (A a) is locally approximated by

viT a) vg. (3.18)

Let b = , bi, the total number of observations in all blocks. Normalizing I(;4 a) by
dividing each bi by b provides a solution which is independent of the sample. The c-
optimal design is then obtained by minimizing, after normalization, (3.18) with respect

bi k
to the choices of the stimulus levels xi and Ai = -, where Ai > 0, Ai = 1. Theb1

inverse of I is generalized and permitted to be singular since optimal solutions to the
design problem often consist of allocating all resources at one stimulus level.
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The general solution to this optimization problem is given by Wu [1987] and
applied to the power logistic distribution. After presenting the general results we need
to examine optimal designs for specific values of m in greater detail. Define

w(y) = dT(y)/{T(y) (1 - T(y)}1/2, (3.19)
dy

and let the slope of the curve c = w(y) (1, y) be given by

d d d
r(y) = M- [wy) y /- w(y) = y + w(y)/-w(y).

dy dy dy

Then the relevant portion of the theorem given by Wu [1987] drawn from Ford,
Tornsey and Wu [1988] is listed as Theorem 3.5.

Theorem 3.5 Suppose that the curve c is closed, bounded and convex. Then there
exists p, = T(y) and p 2 = T(y), p < p2, with y and y satisfying (3.20),

rGy) - r(.) = W) y + w(,)X (3.20)w @ + w(X)

such that if p1 5 p - p2 , then the c-optimal design for estimating xp is the one-point
design allocating all samples to the stimulus level corresponding to p.

The conditions of the theorem hold for the power logistic distribution [Wu 1987].
Some values for p, and p2, taken from Wu [1987], are listed in Table 3.1.

Table 3.1 Range of quantiles calling for a
one-point c-optimal design

m range [p,, p2]
1/2 [.110, .939]
2/3 [.097, .925]
3/2 [.069, .909]
3 [.051, .8981
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Note for the few values of m considered, p1 < .5 < p2 which, from Theorem 3.5,
indicates that the c-optimal design for xSo calls for sample allocation of the stimulus
level corresponding to the median. We now extend these results.

Recall that the PLTR strategy transforms responses in such a way that the target
quantile is local to the median of the assumed power logistic distribution. We assert
that in all practical cases, the c-optimal design for estimating this target quantile is the
one-point design placing all observations at the target quantile. By practical cases, we
mean those strategies suggested in Table 2.1, where nc -m ranges from two to
fourteen. (One would expect them to be exactly equal only under large sample
conditions and under the assumption that the original response function family was
known to be logistic.) We addressed the assertion numerically by finding p, < P2 for
which (3.20) was satisfied. The values p1 < p2 were chosen on (0, 1) in increments of
.00001 for each value of m on [.1, 20] chosen in increments of .1. The values y and y
were computed by T -1 (p1) and T 1 (p2), respectively, and then inserted in (3.20) to
check for equivalence. The resulting p, and p2 appear graphically in Figure 3.1 and a
subset appears in Table 3.2. Numerically, the assertion of c-optimality holds, as not
only do the curves for p1 and p2 not cross the .5 quantile, but also they appear to be
approaching asymptotes far removed from .5; over the interval m E [10.2, 20], p
decreases only by .002 and p2 by .003.

Table 3.2 Range of quantiles calling for a
one-point c-optimal design (extended)

m range [p, p2]

.1 [.124,.962]

.3 [.111,.943]

.5 [.105, .933]

.7 [.096, .926]

.9 [.087, .921]
1.1 [.080, .917]
1.3 [.074, .914]
1.5 [.069, .911]
1.7 [.065, .909]
1.9 [.062, .907]
2.0 [.061, .906]
4.0 [.046, .897]
8.0 [.037, .891]
12.0 [.034, .889]
16.0 [.033, .888]
20.0 [.032, .887]
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3.2.2. The Appropriateness of Robbins-Monro

In this section we argue that the Robbins-Monro strategy, specifically the Delayed
Robbins-Monro which we are employing, has desirable properties with respect to the
c-optimality and the existence of MLEs. Beginning with c-optimality, recognize that
there is no way of truly attaining a c-optimal design for this problem. Its complete
determination requires prior knowledge of the target quantile location, a location
dependent on unknown parameters. In two stage testing one could use a first stage to
estimate the parameters and then allocate samples based on those estimates. We
have chosen instead to approach the problem sequentially and without reference,
during data collection, to a specific parametric family. Two important properties
support that choice.

The original Robbins and Monro [1951] strategy is given by

xn+1 -xn -an (Yn"- P),

where xn is the n design point, y. is 0 or 1, according as failure or success is observed,
and a. is a decreasing sequence of numbers tending to 0. Under very general
conditions, Dvoretzky [1956] showed that the sequence of design points converges in
probability to p. Then in terms of large sample sizes, this procedure is gathering data
in the spirit of c-optimality. Unfortunately, we do not have very large sample sizes at
all. It is then very important for the process to converge rapidly. What the
experimenter can alter is the choice of the sequence, represented by a.. Chung [1954]
establishes that setting an = c/n causes rapid convergence to the target quantile.
Kesten [1958] extended this result by showing this applies also to variations in which
the magnitude of the difference between xn and xn + 1 is dependent on the number of
reversals, as in the case for DRM. The DRM then is a procedure which converges
rapidly in probability to the target quantile. Therefore, theoretically, it is well suited
to gather information approximating a c-optimal design. In application, even for quite
small samples, it has been shown to perform well in this task. Several of the articles
cited in Chapter 1 support the small sample performance claim.

With regard to estimate existence, we argue informally that the DRM collects data
in such a way as to maximize the probability the MLEs for (, a) exist. Recall from
Theorem 3.2 that condition II is sufficient to ensure MLE existence. An essential
aspect of II is that there exist an xt < x2 where x, results in a success and x2 a failure.
The probability that this occurs can be expressed p(s1 = 1) p(s2 = 0) by trial
independence. Suppose the goal is to choose x1 and x2 with x1 < x2 so as to maximize
that probability. The fairly obvious solution, subject to the inequality, is to select
x1 and x2 so that p(s1 = 1) = p(s2 = 0) = 1/2. Then our chances of satisfying IT are
greatly enhanced by taking many observations close to the median of the transformed
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response distribution. From the previous discussion, the DRM is appropriate for
collecting such observations. So not only does the DRM strategy collect data in the
spirit of c-optimality, but by virtue of the transformed response median being the
target, it also collects data in an efficient manner in terms of estimate existence.

4. A SIMULATION STUDY

Simulation provides an arena in which the PLTR strategy may be studied in
operation. Through simulation we may explore the combined performance of the
three distinct concepts that comprise our strategy. The Delayed Robbins-Monro
design, the transformed response approach, and the maximum likelihood estimation of
power logistic quantiles each has solid analytical footings supporting their individual
use. However, their individual strengths do not guarantee the effectiveness of their
use in combination. Moreover, those supporting analytical results are primarily
asymptotic findings, lending only limited insight to practical applications. It is
necessary to evaluate the procedural properties of this method. Simulation serves well
in that task.

Some specific benefits of simulation follow. Through simulation we gain
experience with the performance of the procedure in completely specified
environments. We may determine its feasibility by considering issues such as estimate
bias and small sample variance. Procedural quirks such as problems in convergence
can be identified. In this chapter, we pursue each of these subjects in an attempt to
better understand the method's properties.

Chapter 4 considers a simulation study of the PLTR strategy for the estimation of
extreme quantiles. Section 4.1 discusses the scope of this exercise. Section 4.2
describes the simulation design and methods of analysis. Section 4.3 details the
optimization method used. Section 4.4 presents the results and addresses the above
issues.

4.1 Scope

The scope of this study is intentionally narrow. We seek only to accomplish two
tasks. The first is to determine the feasibility of applying this strategy to extreme
quantile estimation. We leave detailed performance evaluation for further study. The
second is to relate, where appropriate, the analytical results of Chapter 3 to the
empirical findings of this chapter. We hope to derive support for the strategy's
concept from the simulation.

To address feasibility, we must determine whether or not the procedure works,
and at what cost. We focus on the performance of the strategy for a small set of
design conditions. The properties of most interest are bias, mean square error, and
robustness to parametric form. Additional properties, such as estimate convergence,
are considered to help gauge the cost of implementation.
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Empirical support for the procedure is also pursued. Certainly, where empirical
and analytical results can be compared, they must agree. But also they can combine
to provide a more complete understanding of the strategy. Trivially, small sample
behavior would be extremely difficult to study from a theoretical standpoint as would
asymptotic behavior from an empirical one. Less obvious distinctions occur when
considering, estimate existence, and optimal design. Each have rigid analytical
interpretations, but also they have practical implications. Our intent is to approach
these issues in both manners, drawing upon pertinent analytical results from Chapter 3
and adding to them the empirical results of this chapter.

4.2 Experimental Strategy

In this section we discuss the experimental strategy for the simulation. Subsections
are termed simply Design and Analysis. In Section 421 we introduce the design,
justify its components, and describe how the data is to be collected. In Section 4.2.2
we summarize the intended analysis, noting its relationship to the objectives of this
chapter.

4.2.1 Design

The design matrix is given in Table 4.1. It consists of just three factors: target
quantile, distribution, and sample size. Target quantiles determine both the quantile
to be estimated and the specific transformed response strategy chosen, that is, how
many subjects must respond in a stimulus block before a success occurs. The
distribution refers to the true underlying response distribution for which the target
quantiles are to be estimated. The sample size indicates the number of stimulus
blocks to be sampled. The primary response is the root mean square error Vf-'-.

The .8, .9, and .95 quantiles serve as the levels of the target quantile factor. We
are taking extreme quantiles to mean those outside the first and third quartiles but
consider here only some commonly sought upper tail quantiles. For the two
symmetric distributions there is no loss in generality by considering only the upper tail.
These specific quantiles are not among the resultant median quantiles from the
transformed response strategies listed in Table 2.1. However, they do closely
approximate the transformed medians .7937, .9057, and .9517 suggested by the
strategies requiring 3, 7, and 14 responses, respectively, for a success.

An interest in these three relates to their corresponding quantiles of the
transformed response distribution. Optimal design results noted in Chapter 2 suggest
that for several response distributions one should collect data precisely at the stimulus
level corresponding to the quantile to be estimated. However, data intended for
median estimation is commonly used to draw inference about the location of most
quantiles between the first and third quartiles. Beyond them one runs greater risks of
departure from the parametric assumption as well as extrapolated estimates. In our
study, when the target quantile is .8 (a transformed quantile of .5) the corresponding
transformed quantile of .9 is less than .75. Thus if we accept the above mentioned
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Table 4.1 Design matrix

Target Quantile
Response

Sample Blocks Distribution .8 .9 .95

Cauchy

15 Exponential

Lasistic

Cauchy

20 Exponential

Logisi
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practice, we may estimate the .9 quantile using data which actually targets the .8
quantile. A similar relationship holds between .9 and .95 and also .95 and .99. If the
".75" estimate proves to be good, the resource advantage could be substantial. Recall,
for example, that only 3 responses are required to establish a success when estimating
the .8 quantile in contrast to 7 responses for the .9 quantile.

The distribution factor consists of three levels: the logistic, two-parameter
exponential, and Cauchy distributions. The logistic is one of the most common
response distributions assumed because of its similarity to the normal distribution and
its greater mathematical tractability. In this study it has location and scale parameters
of 0 and 1 respectively. The two-parameter exponential is the representative
asymmetric response function. It has median 0 and variance equivalent to that of the
logistic. The Cauchy distribution, with its heavy tails, is an obvious severe test case for
any extreme quantile estimation. It has been scaled so that its first and third quartiles
match those of the logistic. When Wetherill et al. [1966] investigated the use of
transformed response strategies on Cauchy quantiles, the results were discouraging.
Thus the Cauchy response distribution should pose a challenge for the proposed
estimation method.

Two sample sizes, 15 and 20 are considered. These two were chosen for the
reasons that follow. Previous experience [Bodt and Tingey 1986] suggests that the
precision resulting from 15 samples would be acceptable here. The practical concern
for too many required subjects bounds the sample size above at approximately 20 in
the most resource exhaustive case. There, to target the .95 quantile, as many as 20
blocks x 14 subjects/block yielding 280 subjects could be required. This requirement,
280 subjects, is consistent with applications in the literature, but many more would be
impractical.

Extreme quantile estimates, used in the computation of the response for the design
matrix, are gathered as follows. The simulation chooses a treatment combination and
produces 500 estimates for each quantile. We chose 500 iterations because of the
acceptance of that number in the literature. For each estimate, data is gathered by
the Delayed Robbins-Monro strategy acting on transformed responses. Estimation is
based on the power logistic assumption and uses transformed responses. The only
exception to this is when the distribution is logistic. Then maximum likelihood using
the original responses and the logistic assumption is also employed. Those cases in
which the response distribution is truly logistic afford us an opportunity to empirically
address whether a disadvantage in estimation results when using the summarized
transformed responses instead of the original responses.

Two issues remain to be discussed. One objective of this study is to compare the
PLTR's performance for different response distributions. What we would like to
isolate as the major cause for observed differences is the differently weighted tails. In
an attempt to reduce confounding we tried to make them comparable with regard to
spread. Recall that the logistic and Cauchy distributions share common quartiles, and
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the exponential and logistic share a common variance.

The second issue is the choice of design parameters, initial value and the set
constant for the Delayed Robbins-Monro algorithm. The initial value is set each time
at 0, the median for each distribution. The set constant is taken to be 3.6,
approximately two standard deviations for the logistic F( {y-pS}/o) with ju = 0 and
o = 1. Although much advice exists for the optimal selection of each, all of it assumes
that more is known about the response distribution than is commonly the case. The
values selected should provide a reasonable opportunity for the strategy to prove its
worth, but we leave the question of optimal design parameters for further study.

42.2 Analysis

In this section we present the methods of analysis used to characterize the
performance of the proposed strategy. That strategy consists of both data collection
and estimation procedures. Data collection is taken to be the Delayed Robbins-
Monro algorithm acting on transformed responses. Estimation assumes a power
logistic distribution for the transformed responses and is accomplished via maximum
likelihood. The intent of this analysis is to establish whether jointly the proposed data
collection and estimation procedures are feasible and supportive of the Chapter 3
results.

To this end--joint performance evaluation--we place the most emphasis on the
quality of the observed estimates. Certainly, the estimates first need to fairly
represent the actual quantiles sought. The measure of closeness adopted here is the
root mean square error. We augment the information given by the /mse with the
examination of histograms of the empirical estimate distribution, outlier identification,
and observed sample sizes. Each of the /mse and supporting information help to
answer joint performance questions.

A few questions must be answered with this data. How does the underlying
response distribution influence the results? Does the procedure work well for all
target quantiles? What role does sample size play? Does the ".75" quantile estimate
hold any promise? Each question is considered in Section 4.4.

Although the final estimates are of primary importance, the data on which they are
based must be informative. One analysis goal is to determine if the data collection
approach involving the Delayed Robbins-Monro and transformed responses yields
informative data relative to the estimation approach taken. The quality of the
estimates lends some insight to this issue, but more exacting evaluation of the data
collected can be achieved. From the results of Chapter 3 a desirable data collection
strategy must play a supportive role to estimation. By that we mean that the design
should be practically optimal and should promote conditions for estimate existence.
How well DRM plays that role is examined.
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4.3 Optimization

Maximum likelihood estimation of the extreme quantiles requires the use of
optimization techniques. The quantile estimator (3.14) is an MLE by the invariance
property of maximum likelihood if the estimators in that expression are themselves
maximum likelihood estimators. Thus the immediate task, for quantile estimation, is
to maximize the likelihood function with respect to the parameter vector (M. a, m)T .
We choose equivalently to maximize the log-likelihood and begin by setting the
expression in (3.14) equal to zero for each of the three parameters. The resulting
system of equations, the solution for which is a stationary point, has no closed form
solution and must be solved numerically. The optimization technique chosen for that
task is the subject of this section.

Newton-like methods are commonly employed for problems of this type. Fletcher
(1987] describes the Newton-Raphson procedure in a manner convenient for this
discussion. We adopt that presentation here. The Newton-Raphson method begins by
locally ~proximating the log-likelihood function I about the k"h parameter vector
iterate 0" with a second-order truncated Taylor series expansion. Denote the vector
of first derivatives with respect to 0 and evaluated at 0) by h.. Similarly denote the
Hessian matrix evaluated at " by H). Define 6 = 0 -0, and then write the
expansion of 1(d) about 0(k) as

I(8) + 6) = I(0)) + h(k) 6 + 1/2 T H(k)6. (4.1)

The sum 0)+ P serves as the next iterate + where maxxL; ize the right
hand side of (4.1). The solution for P) is givenby solving Hk ) h) handisa
maximum for the quadratic apprqximation providing that the Hessian matrix is
negative definite. Consider that Wk) is interpretable as a correction to or as the
directional step in the process. We use this interpretation later.

A variation on the above involves a substitution for the H. In our optimization
problem, the Hessian matrix contains random variables and can be approximated with
its mathematical expectation E(H). The principal advantage in doing this is
mathematical tractability. The Newton-Raphson method with this substitution is
termed the Method of Scores [Kendall and Stuart 1978]. The Method of Scores, with
adjustments to follow, is the foundation for our optimization procedure.

It was necessary to adjust the Method of Scores because of the unacceptably low
percentage of cases attaining convergence. Examination of many cases revealed that
some data sets gave rise to poorly conditioned matrices corresponding to E(H). The
specific problem was that E(H) sometimes approached negative semidefinite form.
The inverse matrix then assumed values of large magnitude, forcing the directional
step 6 to be too large. Two adjustments were necessary to improve the situation. We
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determined that the power parameter m was contributing the most to the near
indeterminacy when it was present. Therefore, rather than optimizing with respect to
all three parameters simultaneously, we optimized in terms of 1 and a for each value
of m along a suitable unidimensional grid. The best among the grid solutions found
was taken to be the local optimum. When employed, this modification enhanced the
procedures performance, but insufficiently. Thus a second modification was made. A
restricted step rule was adopted, preventing a step greater than .1 for each parameter
iterate [Fletcher 1987]. The intention is to slow the procedure for U and a until it
nears a local maximum The Method of Scores, with both adjustments, yielded
reasonable estimates for our feasibility study.

4.4 Results

In this section we discuss the empirical results and relate them to the theoretical
findings of Chapter 3. Feasibility issues are addressed first by focusing on specific
procedural performance characteristics. Empirical support follows for the procedure
with regard to optimal design and summary information.

4.4.1 Feasibility

To be considered feasible, the procedure must perform well with respect to its
task, extreme quantile estimation. Additionally, it should possess some distinguishing
features to recommend its use. Both points are discussed.

Bias of the target quantile estimates is reported in Table 4.2. In each cell, included
are the true target quantile, the average of its estimates, the bias, and a 95%
confidence interval for the bias using a normal approximation. Confidence intervals
with an asterisk highlight those cases in which the bias cannot be considered
significant at the .05 level. The bias appears slight for estimations in which the true
response distribution form was logistic or exponential; where present, in nine of ten
cases its nature was positive. For the Cauchy response form the bias varies with target
quantile, appearing moderate, slight, and large for the .8, .9 and .95 quantiles
respectively. The large negative bias for the .95 quantile indicates that either the
power logistic fit was unable to accommodate the Cauchy's heavy tails, the design is
unable to gather enough information near that quantile, or both. However, the
estimate bias in general is not prohibitive and the procedure seems to perform
reasonable well for, at least, logistic and exponential extreme quantile estimation.

The V performance is recorded in Table 4.3 together with the number of data
sets for which convergence was achieved. The procedure performs better for the
logistic response distribution than for the exponential, and better for the exponential
than for the Cauchy. That the logistic response distribution provides the best results is
no surprise. Recall that the power logistic used to fit the transformed responses is the
exact model when the true response distribution is logistic. The very poor
performance for some Cauchy cases is due to the greater bias, in general, found in
Cauchy quantile estimates. The magnitude of the -v7mse s are encouraging for most
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Table 42 Bias of PLTR Strategy

Target Quantile (p)
Response

Sample Blocks Distnbution .8 .9 .95

x = 1.512 x - 3.381 x = 6.936
Cauchy x M L770 x 3.297 x - 4.774

bias - 258 bias - -.084 bias = -2.162
(.183, .333) (-.179, .011)0 (-2.311, -2.013)

x - 1.663 x w 2.920 x - 4.177

15 Exponential x = 1.789 x w 3.061 x = 4.091
bias = .135 bias = .141 bias = -.086
(.061, 209) (.072, .210) (-.150, -.022)

x - 1386 x - 2.197 x a 2.944

Logistic x M L471 x = 2.329 x - 3.043
bias = .085 bias - .132 bias = .099
(.035, .135) (.084, .180) (.055, .143)

x - L512 x - 3.381 x - 6.936

Cauchy x M 1.765 x = 3.311 x - 5.067
bias = .253 bias - -.070 bias = 1.869
(.187, .319) (-.159, .019)* (-2.026, -1.712)

x - 1.663 x = 2.920 x - 4.177
A W

20 Exponential x = L792 x = 3.074 x - 4.209
bias - .29 bias= .154 bias - .032
(A7, .1 (.093, 215) (-.030, .094)*

x - 1.386 x 2.197 x - 2.944

Logistic x - 1.435 x 2.310 x M 3.002
bias - .049 bias - .113 bias - .058
(-098)" (.072, .154) (.023, .093)

NOTE: In this table x denotes x10oP
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Table 4.3 Root-mean square error, standard
error, and the number of convergences for
the PLTR strategy

Target Quantile
Response

Sample Blocks Distnbution .8 .9 .95

.854 .961 2.421
Cauchy .814 .957 L089

#456 #393 #206

.809 .758 .640
15 Exponential .798 .745 .634

#444 #453 #384

.557 .525 .471
Logitic .550 .508 .460

#460 #431 #423

.776 .906 2.196
Cauchy .734 .9M3 1.153

#478 #393 #208

.643 .621 .605
20 Exponential .630 .602 .604

#470 #480 #410

.546 .466 387
Logistic .544 .452 .383

#472 #470 #450
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logistic and exponential cells of the design matrix. Express v 's in o units, where a
is the population standard deviation. Since o = 1.81 a v/rose of .6 = o/3. The easier
to estimate median has Vi's of o/4 to q/5 for sample sizes consistent with those
found in 15 and 20 blocks respectively [Bodt and Tingey 1987]. A limited comparison
between this procedure and Wetherill's indicates that they may be comparable for
estimation of the .8 logistic quantile.

Detailed comparison with other procedures is involved and beyond the scope of
the feasi3ility study. Where procedures differ only in estimation, the data can be
considered of near equal quality, and direct comparisons of performance can be made.
We do this in the next section, comparing logistic and power logistic estimators.
However, when the designs differ also, much attention must be given to fairly using
initial inputs to the design for each procedure. For example, Wetherill's [1963] UDTR
uses the Up and Down strategy, and his estimator is an average of stimulus levels
generated by that sequential design. The stimulus levels selected depend on the initial
design point and the spacing between levels; the optimum selection for each depends
on the response distribution at hand. Similarly the DRM collects data in a manner
dependent on the initial design point and spacing, and the quality of the power logistic
estimate is a function of that data. Comparing these two fairly requires examination
over a variety of input selections and will not be attempted here.

The convergence of the optimization procedure is a major consideration.
Generally, convergence was achieved often for the limited number of blocks used. A
77% convergence rate was the minimum observed except when estimating the .95
Cauchy quantile where the percentage was a dismal 41%. Table 4.3 shows that with
20 blocks convergence is likely to occur more often than with 15 blocks. For example,
for the .8 quantile, where convergence was not a problem regardless of distribution,
91% and 95% convergence is achieved for 15 blocks and 20 blocks respectively. This
gain in convergence rate is not present in the Cauchy .9 and .95 quantile cases. The
problem is always more severe for the .95 quantile than the .8 quantile; although, for
the exponential response the convergence rate rises slightly going from the .8 to .9
quantile.

The actual sample size plays an interesting role in the formation of Table 4.3.
Table 4.4 lists the average number of subjects required for each cell of the design
matrix. Of interest is that for the logistic and exponential response distributions the
Vi in Table 4.3 is smaller, the further out in the tail one estimates. An initial
reaction might be to glance at Table 4.4 and claim that the increased sample size is the
obvious cause. In truth though, the power logistic only has available to it 15 or 20
blocks regardless of the quantile being estimated. The not so obvious reason for the
smaller ' m's is that in each case the variance of the transformed response
distribution decreases over n, = 3, 7, 14 - the strategies corresponding to the .8, .9
and .95 quantiles respectively. Then, as we exect, the populations with smaller
variances give rise to estimates with smaller Vmse's. This reasoning does not apply to
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Table 4.4 Subject requirements for PLTR strategy.

Target Quantile
Response

Sample Blocks Distribution .8 .9 .95

avg. 35.3 avg. 71.5 avg. 124.8
Cauchy rmin. 26 min. 44 min. 81

max. 43 max. 94 max. 169

avg. 35.3 avg. 74.5 avg. 137.7
15 Exponential min. 25 minu. 49 min. 88

max. 43 max. 97 max. 176

avg. 35.5 avg. 75.6 avg. 143.1
Logistic min. 26 min. 44 min. 82

max. 43 max. 95 max. 192

avg. 47.4 avg. 97.9 avg. 168.2
Cauchy mini. 35 min. 71 miii. 127

max. 56 max. 120 max. 220

avg. 46.7 avg. 99.8 avg. 187.5
20 Exponential min. 33 min. 73 mim. 133

max. 56 max. 125 max. 245

avg. 47.3 avg. 102.3 avg. 195.7
Logistic min. 35 min. 71 min. 109

max. 57 max 127 max. 250
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the Cauchy response distribution as its variance does not exist. Bias is contributing
heavily to the larger s for the .95 quantile estimate.

The ".75" quantile estimate was suggested in Section 42.1 as a way of using the
power logistic model fit to estimate quantiles other than the largest quantile
determined by the transformed response strategy. The ".75" power logistic quantile
estimate proved to be biased in nearly all cells of the design matrix. Apparently the
power logistic fit is limited to local smoothing about the .5 power logistic quantile. In
that role it performs well since each of the .8, .9 and .95 quantile estimates considered
here result from such smoothing. Further study is required to determine the size of
the trust region.

The principal reason for choosing a 3-parameter model is greater flexibility in
fitting the data. Robustness to distributional form is considered. In terms of estimate
bias, only the Cauchy distribution roved to be a problem for the estimation technique
employed. The results of the Vmse and convergence performance were similar, with
the Cauchy distribution presenting most of the problem. Though our study is limited,
the procedure does work for more than just the logistic response distribution.

4.4.2 Empirical Support

Section 32.1 determines that data can be collected optimally by placing all
observations at the quantile to be estimated. In Section 3.2.2 we suggested that the
DRM strategy represents a practical approach to this optimal data collection. We
have also mentioned the possibility that summarizing the data through transformed
responses may hinder estimation. In this section we discuss the empirical support for
the DRM strategy and the claim that information is not being lost by choosing to
estimate with transformed responses rather than the original response data.

The DRM strategy does collect data about the quantile to be estimated. Figure
4.1 shows a histogram of the final stimulus level tested for each of the 384 cases
corresponding to the exponential response distribution, 15 blocks, and the .95 quantile.
The assumption is that the last stimulus collected is representative of several data
points gathered by the sequential strategy. The mean of those values is 4.112, very
close to the true quantile value of 4.177. Similar histograms were formed for the other
cells of the design matrix. Of note is that the bias observed in the estimators is
reflected in the last stimulus histograms.

Another concern in selecting the design is that it yields data likely to satisfy the
existence conditions given in Section 3.2.3. Figure 4.2 shows a typical data set
gathered by the DRM strategy acting on transformed responses. Note that the
conditions are satisfied.

Table 4.5 lists the Vt-' s associated with power logistic and logistic estimation
based on the exact same data from the design matrix. Our purpose here is to
determine whether or not information loss results from using the transformed
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Stimulus Original Responses Transformed Responses Required
Levels (+ or-) ( or O) Move

.00 - 0 up
1.80 0 up
3.60 + + + + + + + 1 down
2.70 + + + + + + + 1 down
2.10 + - 0 up
2.55 + + + + + + + 1 down
2.19 + - 0 up
2.49 + + +- 0 up
2.75 + + + + + + + 1 down
2.52 + + + + + + + 1 down
2.32 + + + + + + + 1 down
2.14 - 0 up
2.31 + + + + + + + 1 down
2.16 ++ + + + . 0 up
2.29 + +- 0 up

Figure 4.2 Transformed logistic responses collected by the
DRM strategy
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Table 4.5 Root-mean square error comparison
between power logistic and logistic estimation
for cases in which convergence was achieved for
both

Target Quantile
Response

Sample Blocks Distribution .8 .9 .95

Power .547 .534 .475

Logistic #404 #380 #381

15

Logistic .724 .448 .439

Power .552 .465 385
Logistic #438 #417 #412

20

2 Logistic .804 .438 .354
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response information only. For this purpose vG is the primary focus. The power
logistic estimate has a smaller Vr than the logistic for the .8 quantile. The reason is
that with just an average of 35 or 47 observations for 15 blocks and 20 blocks,
respectively, the logistic estimator delivers some values much larger than the power
logistic estimates. For example, with 15 blocks the maximum power logistic estimate
is 5.1 as compared to 8.6 for the logistic. That one value, 8.6, contributed
approximately .1 to the logistic Vis. With more data for the .9 and .95 target
quantiles, the maximum estimates are of comparable size. In Figures 4.3-4.4
histograms of both estimators are shown for the 20 blocks and the .9 quantile. As
Table 4.5 suggests, little difference can be seen, though the logistic estimate is some
what better. Similar observations are appropriate for the other direct comparisons of
.9 and .95 quantile estimates indicating that if information loss is induced by using
transformed responses, that it is slight.

5. DISCUSSION

The challenge of extreme quantile estimation in a binary response environment is
immense. The most perplexing of the obstacles faced is the binary response itself.
The very limited information that it holds relevant to a subject's individual tolerance
makes the study of that random variable and its distribution difficult in even the most
narrowly focused estimation quests, such as the pursuit of central tendency via the
tolerance distribution median. Even given the extensive treatment the median
estimation problem has received in the open literature, no generally accepted correct
solution to the problem exists. But in extreme quantile estimation the challenge is
greater. There the parametric assumptions made become more critical. Consider the
difference between the .9 quantiles from a heavy versus light tailed distribution, and
the ability of common goodness of fit measures to discern between such distributions.
Without the distribution family at our disposal a priori, which among the ten to fifteen
proposed for this environment should be used? Results from c-optimality
considerations suggest that except for the most extreme quantiles, data should be
gathered at the stimulus level corresponding to the target quantile. But without prior
knowledge of a completely specified distribution that stimulus level is also unknown.
Some sequential methods overcome this hurdle by converging in probability to the
desired stimulus level, but also they exhibit bias for finite samples. Among the many
sequential strategies available, which is best suited for extreme quantile estimation?
Finally, the most common estimation, maximum likelihood, is often hampered by data
sets which fail to produce unique estimates and likelihood equations with no closed
form solution for the stationary values. It is therefore with open eyes that one must
proceed when engaging this challenge, and we have attempted to do so here.

To a great extent this work joins established concepts and focuses them on
extreme quantile inference. We believe that the approach proposed here, Power
Logistic Transformed Response strategy (PLTR), represents a contribution in
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addressing many of the difficulties discussed, but we recognize the potential for its
improvement. The PLTR begins with a transformation of responses as given in Table
2.1. Its principal advantage is that it reduces the problem to one of median estimation,
thereby allowing us the luxury of open literature information on that problem.
Moreover, we avoid the bias usually associated with sequential strategies operating in
the distribution tail. The transformation actually summarizes the original response
information, and the empirical evidence suggests that not a great deal of information
is lost through condensation of the sample space. This transformation is superior to
just fixing multiple samples for each stimulus because it permits a sequential strategy
acting on it to abandon stimulus levels early when a failure is encountered, a more
frugal use of resources. Another summarization procedure [McLeish and Tosh 1983]
shows promise, but it depends to some, possibly limited, extent on the logistic
distribution whereas transformed responses do not. The independence of
distributional form assists us in collecting data for a c-optimal design for a variety of
distribution families. Additionally, even if estimation is to be made using the original
responses, the transformed response method can assist the experimenter in gathering
data local to the extreme quantiles. Our conclusion is that the use of the transformed
responses with a good sequential strategy is highly recommended for data collection.
More research is required to assert that estimation with respect to the transformed
response distribution is the the best way to go, though our initial results are
encouraging.

Under transformed responses the target quantile is local to the median of the
transformed response distribution. With the problem reduced to median estimation
we chose the Stochastic Approximation Method of Robbins and Monro [1951] as our
sequential strategy. Asymptotically the procedure is consistent and therefore
desirable with respect to c-optimality design requirements when the power logistic
parameter m is known. This claim also holds for several parametric assumptions
besides the power logistic model employed here. Further, the small sample
performance of the strategy in Chapter 4 as a design and in Bodt and Tingey [ 1986] as
a design used with maximum likelihood estimation has been good. Finally, we showed
in Section 3.2.2 that data satisfying I from Theorem 3.1 will likely result from
Robbins-Monro implementation, thereby ensuring MLE existence for j, and a when m
is known.

Certainly, other design possibilities exist. Wetherill et aL [1966] used for this
purpose Dixon and Mood's [1948] Up and Down Method, then considered a good
sequential strategy. It calls for equal spacings between adjacent stimulus levels
making it conducive for use with his estimator w, a nonparametric estimator discussed
in Chapter 2. Direct comparison between UDTR and PLTR is difficult because the
stimulus levels tested are different, but in a rough comparison we saw no real
difference in final results for the logistic distribution. To our knowledge his procedure
has not been examined for other response forms. Einbinder [1973] substituted
Langlie's design for the Up and Down and a 3-parameter Weibull MLE on the
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original responses for w. No extensive check of its performance has been done. Other
designs might be suitable, such as Wu's [1985] EQRC, but in our study [Bodt and
Tingey 1986] we found no significant advantage to using it over the Delayed Robbins-
Monro with maximum likelihood estimation after the data had been collected. Thus,
we have selected one of the best possible strategies for the sequential design task.

Many distributional forms could have been used to estimate the target quantile,
but we chose the power logistic. It possesses two attractive qualities. The first is that
it has great intuitive appeal if the true underlying response distribution is logistic.
Then the power logistic is the exact distribution corresponding to the transformed
response. This enabled us to compare the estimation of extreme quantiles using
original responses and a logistic distribution to transformed responses and the power
logistic distribution. The second is that the third parameter provides greater flexibility
in modeling the distribution in the usual case where it is unknown.

One problem with our selection is the difficulty associated with solving the
likelihood equations. We established conditions under which existence is guaranteed,
and we tailored our grid optimization approach to those results. Specifically, for each
fixed value of one parameter, conditions were established under which the MLEs for
the other two parameters exist uniquely. The grid approach combined with a
restricted step Method of Scores allowed us to select the best among the two
parameter mimia computed. It is possible that a reparameterization is called for, or
possibly an a;ternate parametric assumption.

The choice of the power logistic was important for our stated purposes, but other
assumptions aay be better suited to this problem. Forms such as the cubic logistic
[Morgan 1985] and 3-parameter Weibull may prove easier to implement with regard
to maximum likelihood estimation. Possibly some of the distributions suggested in
Chapter 2 as robust procedures could be used. However, when choosing among them,
we must recognize that their tail behavior is not as important as their flexibility about
the median ii used with transformed responses.

In closir , we have demonstrated a feasible new approach for extreme quantile
estimation ia binary response models. Supporting PLTR are encouraging Monte
Carlo resultL and analytical findings suggesting the appropriateness of its component
parts. However, much more can be done to extend this work. We feel that collecting
data in the manner described is probably a good start but parametric assumptions are
an open question. The analytical results could be extended for these other
distributions providing a more general treatment. Comprehensive performance
studies similar to that of Bodt and Tingey [1986] need to be carried out before
suggesting its general use. For example, the influence of varying initial design points,
DRM constant settings, and target quantiles on the estimates should be examined
over a wide range of true response functions. Finally, direct comparison with other
techniques such as the Alexander Extreme Value Design, the work of McLeish and
Tosh [1983] and Wetherill's UDTR strategy is needed.
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